Journal of Radioanalytical and Nuclear Chemistry

, Volume 286, Issue 2, pp 471–476 | Cite as

Fossil fuel CO2 estimation by atmospheric 14C measurement and CO2 mixing ratios in the city of Debrecen, Hungary

  • Mihály MolnárEmail author
  • István Major
  • László Haszpra
  • Ivo Svĕtlík
  • Éva Svingor
  • Mihály Veres


A field unit was installed in the city of Debrecen (East Hungary) during the summer of 2008 to monitor urban atmospheric fossil fuel CO2. To establish a reference level simultaneous CO2 sampling has been carried out at a rural site (Hegyhátsál) in Western Hungary. Using the Hungarian background 14CO2 observations from the rural site atmospheric fossil fuel CO2 component for the city of Debrecen was reported in a regional “Hungarian” scale. A well visible fossil fuel CO2 peak (10–15 ppm) with a maximum in the middle of winter 2008 (January) was observed in Debrecen air. Significant local maximum (~20 ppm) in fossil fuel CO2 during Octobers of 2008 and 2009 was also detected. Stable isotope results are in agreement with the 14C based fossil fuel CO2 observations as the winter of 2008 and 2009 was different in atmospheric δ13C variations too. The more negative δ13C of atmospheric CO2 in the winter of 2008 means more fossil carbon in the atmosphere than during the winter of 2009.


Radiocarbon Fossil CO2 Atmosphere 



This research project was supported by Hungarian NSF (Ref No. OTKA-F69029 and OTKA-CK77550), ATOMKI and Isotoptech Zrt. We would like to thank Ms. M. Mogyorósi and Ms. M. Kállai for the careful 14C sample preparation and measurements.


  1. 1.
    Marland G, Rotty RM (1984) Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–82. Tellus 36(B):232–261Google Scholar
  2. 2.
    Levin I, Münnich KO, Weiss W (1980) The effect of anthropogenic CO2 and 14C sources on the distribution of 14CO2 in the atmosphere. Radiocarbon 22:379–391Google Scholar
  3. 3.
    Levin I, Schuchard J, Kromer B, Münnich KO (1989) The continental European Suess effect. Radiocarbon 31:431–440Google Scholar
  4. 4.
    Levin I, Kromer B, Schmidt M, Sartorius H (2003) A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys Res Lett 30(23):2194. doi: 10.1029/2003GL018477 CrossRefGoogle Scholar
  5. 5.
    Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon J (2006) Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33:L01817. doi: 10.1029/2005GL024213 CrossRefGoogle Scholar
  6. 6.
    Hsueh DY, Krakauer NY, Randerson JT, Xu X, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34:L02816. doi: 10.1029/2006GL027032 CrossRefGoogle Scholar
  7. 7.
    Kuc T, Rozanski K, Zimnoch M, Necki J, Chmura L, Jelen D (2007) Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central Europe: long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49:807–816Google Scholar
  8. 8.
    Suess HE (1955) Radiocarbon concentration in modern wood. Science 122:415–417CrossRefGoogle Scholar
  9. 9.
    Molnár M, Haszpra L, Svingor É, Major I, Švetlík I (2010) Atmospheric fossil fuel CO2 measurement using a field unit in a central European city during the winter of 2008/09. Radiocarbon 52(2):835–845Google Scholar
  10. 10.
    Haszpra L, Barcza Z, Bakwin PS, Berger BW, Davis KJ, Weidinger T (2001) Measuring system for the long-term monitoring of biosphere/atmosphere exchange of carbon dioxide. J Geophys Res 106D:3057–3070CrossRefGoogle Scholar
  11. 11.
    Hertelendi E, Csongor É, Záborszky L, Molnár J, Gál J, Györffi M, Nagy S (1989) A counter system for high-precision 14C dating. Radiocarbon 31:399–406Google Scholar
  12. 12.
    Veres M, Hertelendi E, Uchrin GY, Csaba E, Barnabás I, Ormai P, Volent G, Futó I (1995) Concentration of radiocarbon and its chemical forms in gaseous effluents, environmental air, nuclear waste and primary water of a pressurized water reactor power plant in Hungary. Radiocarbon 37:497–504Google Scholar
  13. 13.
    Molnár M, Bujtás T, Svingor É, Futó I, Svetlik I (2007) Monitoring of atmospheric excess 14C around Paks Nuclear Power Plant, Hungary. Radiocarbon 49:1031–1043Google Scholar
  14. 14.
    Csongor É, Hertelendi E (1986) Low-level counting facility for 14C dating. Nucl Instrum Methods Phys Res B 17:493–495CrossRefGoogle Scholar
  15. 15.
    Hertelendi E (1990) Developments of methods and equipment for isotope analytical purposes and their applications (in Hungarian). C.Sc. Thesis, Hungarian Academy of SciencesGoogle Scholar
  16. 16.
    Stuiver M, Polach H (1977) Discussion: reporting of 14C data. Radiocarbon 19(3):355–363Google Scholar
  17. 17.
    Hesshaimer V (1997) Tracing the global carbon cycle with bomb radiocarbon. Ph.D. Thesis, University of HeidelbergGoogle Scholar
  18. 18.
    Randerson JT, Enting IG, Schuur EAG, Caldeira K, Fung IY (2002) Seasonal and latitudinal variability of troposphere 14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Glob Biogeochem Cycl 16(4):1112. doi: 10.1029/2002GB001876 CrossRefGoogle Scholar
  19. 19.
    Kuc T, Rozanski K, Zimnoch M, Necki JM, Korus A (2003) Anthropogenic emissions of CO2 and CH4 in an urban environment. Appl Energy 75(3–4):193–203CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Mihály Molnár
    • 1
    Email author
  • István Major
    • 2
  • László Haszpra
    • 3
  • Ivo Svĕtlík
    • 4
  • Éva Svingor
    • 1
  • Mihály Veres
    • 5
  1. 1.Hertelendi Laboratory of Environmental StudiesMTA ATOMKIDebrecenHungary
  2. 2.University of DebrecenDebrecenHungary
  3. 3.Hungarian Meteorological ServiceBudapestHungary
  4. 4.Nuclear Physics Institute AS CRPragueCzech Republic
  5. 5.Isotoptech Zrt.DebrecenHungary

Personalised recommendations