Journal of Radioanalytical and Nuclear Chemistry

, Volume 286, Issue 3, pp 637–642 | Cite as

Radiation chemistry approach to the study of sedimentary microenvironments as models for the protection of bio-organic molecules on the early earth

Article

Abstract

This work examines the influence of sodium montmorillonite on the chemical transformations undergone by two nucleosides (cytidine and adenosine) in simulated primitive Earth conditions. The aim of this study is to test the hypothesis of a protective role of solid surfaces like clay for organic compounds adsorbed on them, when exposed to external sources of ionizing radiation (γ-ray). The results showed this role of protection: the decomposition of nucleosides was lower when adsorbed on a clay mineral. It was also found that a purinic nucleoside (more than pirimidinic) was quickly adsorbed on clay at low pH and desorbed in neutral or lightly basic aqueous solutions. For analysis of samples, different techniques were used: X-ray diffraction, UV–Vis spectroscopy, and HPLC.

Keywords

Chemical evolution Clays Nucleosides High-energy radiation 

References

  1. 1.
    Tilton GR, Steiger RH (1965) Science 150:1805–1808CrossRefGoogle Scholar
  2. 2.
    Schopf JW, Kudryavysev AB, Agresti DG, Wdowiak T, Czaja AD (2002) Nature 416:73–76CrossRefGoogle Scholar
  3. 3.
    Zurbay G (2000) Origins of life on earth and in the cosmos. Academic Press, San Diego, pp 167–250Google Scholar
  4. 4.
    Powner MW, Gerland B, Sutherland JD (2009) Nature 459:239–242CrossRefGoogle Scholar
  5. 5.
    Reimann R, Zubay G (1999) Orig Life Evol Biosph 29:229–247CrossRefGoogle Scholar
  6. 6.
    Mosqueira G, Albarrán G, Negrón-Mendoza A (1996) Orig Life Evol Biosph 26:75–94CrossRefGoogle Scholar
  7. 7.
    Kawamura K (2004) Int J Astrobiol 3:301–309CrossRefGoogle Scholar
  8. 8.
    Shapiro R, Kang S (1969) Biochem 8:1806–1810CrossRefGoogle Scholar
  9. 9.
    Negrón-Mendoza A, Ramos-Bernal S, Gamboa de Buen I (2010) Trans Nucl Sci TNS-00411-2009.R1Google Scholar
  10. 10.
    Cairns-Smith AG, Hartman H (1988) Clay minerals and the origin of life. Cambridge University Press, Cambridge, 196 pGoogle Scholar
  11. 11.
    Negrón-Mendoza A, Ramos-Bernal S, Mosqueira FG (2010) In: Basiuk V (ed) Astrobiology: emergence, search and detection of life. American Scientific Publishers, Los Angeles, pp 214–233Google Scholar
  12. 12.
    Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul, London, 80 pGoogle Scholar
  13. 13.
    Perezgasga L, Serrato A, Negrón-Mendoza A, de Pablo L, Mosqueira G (2005) Orig Life Evol Biosph 35:91–110CrossRefGoogle Scholar
  14. 14.
    O’Donnell JH, Sangster DF (1970) Principles of radiation chemistry. American Elsevier Publishing Company, USA, p 176Google Scholar
  15. 15.
    Dies J, de las Cuevas C, Tarrasa F, Millares L, Pueyo JJ, Santiago JL (1999) Rad Prot Dos 85:481–486Google Scholar
  16. 16.
    Correcher V, Gomez-Ros JM, Garcia-Guinea J, Martin PL, Delgado A (2006) Rad Prot Dos 119:176–179CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autonoma de Mexico, UNAMMexicoMexico

Personalised recommendations