Journal of Radioanalytical and Nuclear Chemistry

, Volume 286, Issue 1, pp 259–263 | Cite as

Study of the cyclotron production of 172Lu: an excellent radiotracer

  • Mahdi SadeghiEmail author
  • Milad Enferadi
  • Hojjat Nadi


172Lu due to its suitable (T1/2 = 6.7 days) and high detection sensitivity, is used as a radiotracer in different fields. 172Lu appears to be suitable as a long-lived rare-earth tracer for compound labelling and biodistribution studies. In the present study, excitation functions via 172Yb(p,n)172Lu, natYb(p,xn)172Lu, 172Yb(d,2n)172Lu and natYb(d,xn)172Lu reactions were calculated by ALICE/91, ALICE/ASH and TALYS-1.2 codes. Deposition of natYb2O3 on Cu substrate was carried out via sedimentation method for the production of 172Lu. Cementation separation process and liquid–liquid extraction (LLX) of no-carrier-added (nca) radiolutetium from irradiated ytterbium(III)oxide target hydrochloric solution was described using Na(Hg) amalgam, α-hydroxyisobutyric acid (α-HIB) and di-(2-ethylhexyl)phosphoric acid (HDEHP).


172Lu Liquid–liquid extraction Targetry Ytterbium(III)oxide ALICE/ASH 


  1. 1.
    Hermanne A, Takacs S, Goldberg MB, Lavie E, Shubin YuN, Kovalev S (2006) Deuteron-induced reactions on Yb: measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides. Nucl Instrum Methods B 247:223–231CrossRefGoogle Scholar
  2. 2.
    Taylor WA, Rundberg RS, Bond EM, Nortier FM, Vieira DJ (2009) Production of a 173Lu target for neutron capture cross section measurements. J Radioanal Nucl Chem 282:391–394CrossRefGoogle Scholar
  3. 3.
    Nédélec R, Vianden R (2009) On the effective anisotropy of the 91–1,094 keV γγ-cascade in 172Yb. Hyperfine Interact 192:109–115CrossRefGoogle Scholar
  4. 4.
    Forker M, Wagner HF (1969) Determination of the ratio of the quadrupole moments of the 1174 keV and the 78 keV levels in 172Yb. Nucl Phys A 138:13–18CrossRefGoogle Scholar
  5. 5.
    Li-Scholz A, Rasera RL (1969) Ratio of static electric-quadrupole moments of K=3 and K=0 states in 172Yb. Phys Rev Lett 23:181–184CrossRefGoogle Scholar
  6. 6.
    Rasera RL, Li-Scholz A (1970) Perturbed-angular-correlation study of electric-quadrupole interactions in 172Yb in thulium metal and oxide lattices. Phys Rev B 1:1995–2006CrossRefGoogle Scholar
  7. 7.
    Devare HG, de Waard H, Niesen L (1977) The hyperfine magnetic field of 172Yb in Fe and Ni. Hyp Int 5:191–197CrossRefGoogle Scholar
  8. 8.
    Rams M, Królas K, Tomala K, Ochiai A, Suzuki T (1996) Charge segregation in Yb4As3 observed using 172Yb PAC probe. Hyp Int 97–98:125–132CrossRefGoogle Scholar
  9. 9.
    Rams M, Królas K (2001) Application of 172Yb in perturbed angular correlation measurements. Acta Phys Polonica A 100:687–697Google Scholar
  10. 10.
    Das SK, Nair AGC, Chatterjee RK, Guin R, Sahn SK (1996) The performance of a new Hf–Lu generator. Appl Radiat Isot 47:643–644CrossRefGoogle Scholar
  11. 11.
    Tárkányi F, Hermanne A, Takacs S, Ditrói F, Király B, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2009) Activation cross sections of proton induced nuclear reactions on ytterbium up to 70 MeV. Nucl Instrum Methods B 267:2789–2789CrossRefGoogle Scholar
  12. 12.
    Grant PM, Montero GE, Newman AM, O’Brien HA (1985) First use of millicurie levels of 172Hf–172Lu in the industrial sector. J Radioanal Nucl Chem 96:629–633CrossRefGoogle Scholar
  13. 13.
    Santos WMS, de Barros S, Suita JC (2000) Cross sections and thermonuclear reaction rates for 181Ta(α, n)184Re, 169Tm(α, n)172Lu, 191Ir(α, n)194Au and 197Au(α, n)200Tl. J Phys G Nucl Part Phys 26:301–308CrossRefGoogle Scholar
  14. 14.
    Venkova Ts, Lieder RM, Gast W, Bazzacco D, de Angelis G, Podsvirova E et al (2003) Pseudo-spin band in the odd-odd nucleus 172Lu. Eur Phys J A 18:1–4CrossRefGoogle Scholar
  15. 15.
    Lahiri S, Nayaki D, Maitreyee N, Das NR (1998) Separation of carrier free lutetium produced in proton activated ytterbium with HDEHP. Appl Radiat Isot 49:911–913CrossRefGoogle Scholar
  16. 16.
    Horwitz EP, McAlister DR, Bond AH, Barrans RE, Williamson JM (2005) A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot 63:23–36CrossRefGoogle Scholar
  17. 17.
    Marchol M (1982) Ion exchangers in analytical chemistry, their properties and use in inorganic chemistry. Academia, PragueGoogle Scholar
  18. 18.
    Kubota M (1974) Determination of trace impurities in high purity lutetium oxide by neutron activation with aid of cation-exchange separation. J Nucl Sci Tech 11:334–338CrossRefGoogle Scholar
  19. 19.
    Balasubramanian PS (1994) Separation of carrier-free lutetium-177 from neutron irradiated natural ytterbium target. J Radioanal Nucl Chem 185:395–395Google Scholar
  20. 20.
    Lebedev NA, Novgorodov AF, Misiak R, Brockmann J, Rösch F (2000) Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n, γ)177Yb → 177Lu process. Appl Radiat Isot 53:421–425CrossRefGoogle Scholar
  21. 21.
    Blann M (1991) ALICE-91, Statistical model code system with fission competition, RSIC code, PACKAGE PSR-146Google Scholar
  22. 22.
    Broeders CHM, Konobeyev AYu, Korovin AYu, Lunev VP, Blann M (2006) ALICE/ASH–Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reaction at intermediate energies, FZK-7183
  23. 23.
    Koning AJ, Hilaire S, Duijvestijn M (2009) TALYS-1.2 A nuclear reaction program, User manual. NRG, NetherlandsGoogle Scholar
  24. 24.
    Ziegler JF, Biersack JP, Littmark U (2006) The stopping and range of ions in mater, SRIM code, USAGoogle Scholar
  25. 25.
    Sadeghi M, Zali A, Zeinali B (2009) 86Y production via 86Sr(p, n) for PET imaging at a cyclotron. Appl Radiat Isot 67:1392–1396CrossRefGoogle Scholar
  26. 26.
    Sadeghi M, Enferadi M, Nadi H, Tenreiro C (2010) A novel method for the cyclotron production no-carrier-added 93mMo for nuclear medicine. J Radioanal Nucl Chem (in press)Google Scholar
  27. 27.
    Sadeghi M, Zali A, Sarabadani P, Majdabadi A (2009) Targetry of SrCO3 on a copper substrate by sedimentation method for the cyclotron production no-carrier-added 86Y. Appl Radiat Isot 67:2029–2032CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Agricultural, Medical and Industrial Research SchoolNuclear Science and Technology Research InstituteKaraj, TehranIran
  2. 2.Faculty of Engineering, Research and Science BranchIslamic Azad UniversityTehranIran

Personalised recommendations