Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 286, Issue 1, pp 175–180 | Cite as

Complex formation of trivalent americium with salicylic acid at very low concentrations

  • Melanie Müller
  • Margret AckerEmail author
  • Steffen Taut
  • Gert Bernhard
Article

Abstract

For the first time, the complexation of americium(III) with salicylic acid was studied at trace metal concentrations using a 2.0 m Long Path Flow Cell for UV–vis spectroscopy. The detection limit of Am(III) in aqueous solution at pH 3.0 was found to be 5 × 10−9 M. Two Am(III)-salicylate complexes were formed at pH 5.0 in 0.1 M NaClO4, indicated by a clear red shift of the absorption maximum. The absorption spectra obtained from spectrophotometric titration were analyzed by means of factor analysis and complex stabilities were calculated to be log β110 = 2.56 ± 0.08 and log β120 = 3.93 ± 0.19.

Keywords

Americium Long path flow cell UV–vis Detection limit Complexation Salicylic acid 

Notes

Acknowledgement

This work was supported by the German Federal Ministry of Economy (BMWi) under contract number 02E10417. The authors kindly thank Prof. Dr. H. Nitsche, University of California and Lawrence Berkeley National Laboratory for the allocation of 243Am from the transplutonium production facilities at Oak Ridge National Laboratory.

References

  1. 1.
    Mueller K, Brendler V, Foerstendorf H (2008) Inorg Chem 47:10127–10134CrossRefGoogle Scholar
  2. 2.
    Klenze R, Kim JI, Wimmer H (1991) Radiochim Acta 52–53:97–103Google Scholar
  3. 3.
    Geipel G (2006) Coord Chem Rev 250:844–854CrossRefGoogle Scholar
  4. 4.
    Choppin GR, Thakur P, Mathur JN (2006) Coord Chem Rev 250:936–947CrossRefGoogle Scholar
  5. 5.
    Thouvenot P, Hubert S (1993) Radiochim Acta 61:15–21Google Scholar
  6. 6.
    Gimbert LJ, Worsfold PJ (2007) Trends Anal Chem 26:914–930CrossRefGoogle Scholar
  7. 7.
    Dallas T, Dasgupta PK (2004) Trends Anal Chem 23(5):385–392CrossRefGoogle Scholar
  8. 8.
    Waterbury RD, Yao W, Byrne RH (1997) Anal Chim Acta 357:99–102CrossRefGoogle Scholar
  9. 9.
    Wilson RE, Hu Y-J, Nitsche H (2005) Radiochim Acta 93:203–206CrossRefGoogle Scholar
  10. 10.
    Vercouter T, Vitorge P, Amekraz B, Giffaut E, Hubert S, Moulin C (2005) Inorg Chem 44:5833–5843CrossRefGoogle Scholar
  11. 11.
    Buckau G, Kim JI, Klenze R, Rhee DS, Wimmer H (1992) Radiochim Acta 57:105–111Google Scholar
  12. 12.
    Thakur P, Pathak PN, Gedris T, Choppin GR (2009) J Solut Chem 38:265–287CrossRefGoogle Scholar
  13. 13.
    Choppin GR, Thakur P, Mathur JN (2007) Inorg Chim Acta 360:1859–1869CrossRefGoogle Scholar
  14. 14.
    Mathur JN, Cernochova K, Choppin GR (2007) Inorg Chim Acta 360:1785–1791CrossRefGoogle Scholar
  15. 15.
    Shiloh M, Givon M, Marcus YJ (1969) Inorg Nucl Chem 31:1807–1814CrossRefGoogle Scholar
  16. 16.
    Carnall WT, Wybourne BG (1964) J Chem Phys 40(11):3428–3433CrossRefGoogle Scholar
  17. 17.
    Carnall WT, Fields PR, Wybourne BG (1964) J Chem Phys 41(7):2195–2196CrossRefGoogle Scholar
  18. 18.
    Nitsche H, Standifer EM, Silva RJ (1989) Radiochim Acta 46:185–189Google Scholar
  19. 19.
    Moulin V, Robouch P, Vitorge P (1987) Inorg Chim Acta 140:303–306CrossRefGoogle Scholar
  20. 20.
    Habhegger H (2008) Calibration & testing report LWCC-2200. World Precision Instruments, SarasotaGoogle Scholar
  21. 21.
    World Precision Instruments (2001) LWCC Instruction Manual. World Precision Instruments, SarasotaGoogle Scholar
  22. 22.
    Binstead RA, Jung B, Zuberbuehler AD (2007) SPECFIT/32 global analysis system user manual. Spectrum Software Asociates, Marlborough, MAGoogle Scholar
  23. 23.
    DIN ISO 11843-2 (2006) Capability of detection, Part 2—Methodology in the linear calibration case. Beuth Verlag, BerlinGoogle Scholar
  24. 24.
    DIN 32645 (2008) Decision limit, detection limit and determination limit under repeatable conditions—Terms, methods, evaluation. Beuth Verlag, BerlinGoogle Scholar
  25. 25.
    Belz M, Dress P, Sukhitskiy A, Liu S (1999) Proc SPIE Int Soc Opt Eng 3856:271–281Google Scholar
  26. 26.
    Pollard PM, Liezers M, McMillan JW, Phillips G, Thomason HP, Ewart FT (1988) Radiochim Acta 44(45):95–101Google Scholar
  27. 27.
    Moulin C (2003) Radiochim Acta 91(11):651–657CrossRefGoogle Scholar
  28. 28.
    Lajunen LH, Portanova R, Piispanen J, Tolazzi M (1997) Pure Appl Chem 69(2):329–381CrossRefGoogle Scholar
  29. 29.
    Silva RJ, Bidoglio G, Rand MH, Robouch PB, Wanner H, Puigdomenech I (1995) In: Chemical thermodynamics of americium. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Hasegawa Y, Morita Y, Hase M, Nagata M (1989) Bull Chem Soc Jpn 62(5):1486–1491CrossRefGoogle Scholar
  31. 31.
    Aoyagi N, Toraishi T, Geipel G, Hotokezaka H, Nagasaki S, Tanaka S (2004) Radiochim Acta 92:589–593CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Melanie Müller
    • 1
  • Margret Acker
    • 2
    Email author
  • Steffen Taut
    • 2
  • Gert Bernhard
    • 1
    • 3
  1. 1.Department of Chemistry and Food ChemistryTechnische Universität DresdenDresdenGermany
  2. 2.Central Radionuclide LaboratoryTechnische Universität DresdenDresdenGermany
  3. 3.Institute of Radiochemistry, Forschungszentrum Dresden-RossendorfDresdenGermany

Personalised recommendations