Fluorescence spectroscopic study on complexation of uranium(VI) by glucose: a comparison of room and low temperature measurements

  • Robin SteudtnerEmail author
  • Thuro Arnold
  • Gerhard Geipel
  • Gert Bernhard


Cryogenic techniques are currently used in scanning tunnelling microscopy (STM) and single molecule spectroscopy. Recently such cryogenic devices have also been adapted to time resolved laser-induced fluorescence spectroscopy (TRLFS) systems applied to uranium(VI). In our study, we interpret TRLFS results obtained for the uranyl(VI) glucose system at room temperature (RT) and under cryogenic conditions of 153 K (cryo-TRLFS). A uranyl(VI) glucose complex was only identified by cryo-TRLFS measurements at pH 5 and not by RT measurements. The uranyl(VI) glucose complex was characterized by five emission bands at 499.0, 512.1, 525.2, 541.7, and 559.3 nm and a fluorescence lifetime of 20.9 ± 2.9 μs. The uranyl(VI) glucose complex formation constant was calculated for the first time to be logßI=0.1 M = 15.25 ± 0.96. Cryo-TRLFS investigation opens up new possibilities for the determination of complex formation constants since interfering quenching effects often encounter at RT are suppressed by measurements at cryogenic conditions.


Uranyl Glucose Laser fluorescence spectroscopy TRLFS Cryogenic conditions Cryo-TRLFS 



We thank Manuela Eilzer for technical assistance in laser spectroscopy measurements.


  1. 1.
    Moore CM, DiChristina TJ (2002) Metal (U, Fe, Mn, Hg) cycling. John Wiley & Sons, New York, pp 1902–1912Google Scholar
  2. 2.
    Geipel G, Brachmann A, Brendler V, Bernhard G, Nitsche H (1996) Radiochim Acta 75:199–204Google Scholar
  3. 3.
    Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Radiochim Acta 89:511–518CrossRefGoogle Scholar
  4. 4.
    Brendler V, Geipel G, Bernhard G, Nitsche H (1996) Radiochim Acta 74:75–80Google Scholar
  5. 5.
    Czerwinski KR, Buckau G, Scherbaum F, Kim JI (1994) Radiochim Acta 65:111–119Google Scholar
  6. 6.
    Pompe S, Brachmann A, Bubner M, Geipel G, Heise KH, Bernhard G, Nitsche H (1998) Radiochim Acta 82:89–95Google Scholar
  7. 7.
    Sachs S, Brendler V, Geipel G (2007) Radiochim Acta 95:103–110CrossRefGoogle Scholar
  8. 8.
    Bargar JR, Reitmeyer R, Davis JA (1999) Environ Sci Technol 33:2481–2484CrossRefGoogle Scholar
  9. 9.
    Wall JD, Krumholz LR (2006) Annu Rev Microbiol 60:149–166CrossRefGoogle Scholar
  10. 10.
    Neiss J, Stewart BD, Nico PS, Fendorf S (2007) Environ Sci Technol 41:7343–7348CrossRefGoogle Scholar
  11. 11.
    Liger E, Charlet L, Van Cappellen P (1999) Geochim Cosmochim Acta 63:2939–2955CrossRefGoogle Scholar
  12. 12.
    Lovley DR (1993) Annu Rev Microbiol 47:263–290CrossRefGoogle Scholar
  13. 13.
    Neuberg C (1908) Biochemische Zeitschrift 13:305–320Google Scholar
  14. 14.
    Suzuki Y, Nankawa T, Yoshida T, Ozaki T, Ohnuki T, Francis AJ, Tsushima S, Enokida Y, Yamamoto I (2006) Radiochim Acta 94:579–583CrossRefGoogle Scholar
  15. 15.
    Warwick P, Evans N, Hall T, Vines S (2004) Radiochim Acta 92:897–902CrossRefGoogle Scholar
  16. 16.
    Sawyer DT, Kula RJ (1962) Inorg Chem 1:303Google Scholar
  17. 17.
    Rao LF, Garnov AY, Rai D, Xia YX, Moore RC (2004) Radiochim Acta 92:575–581CrossRefGoogle Scholar
  18. 18.
    Koban A, Geipel G, Rossberg A, Bernhard G (2004) Radiochim Acta 92:903–908CrossRefGoogle Scholar
  19. 19.
    Koban A, Geipel G, Bernhard G (2003) Radiochim Acta 91:393–396CrossRefGoogle Scholar
  20. 20.
    Tajmir-Riahi HA (1986) Inorg Chim Acta 119:227–232CrossRefGoogle Scholar
  21. 21.
    Tajmir-Riahi HA (1987) Inorg Chim Acta-Bioinorg Chem 135:67–72CrossRefGoogle Scholar
  22. 22.
    Tajmir-Riahi HA (1988) Inorg Chim Acta-Bioinorg Chem 153:155–159CrossRefGoogle Scholar
  23. 23.
    Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2004) Radiochim Acta 92:889–896CrossRefGoogle Scholar
  24. 24.
    Vercouter T, Vitorge P, Amekraz B, Moulin C (2008) Inorg Chem 47:2180–2189CrossRefGoogle Scholar
  25. 25.
    Opel K, Weiss S, Hubener S, Zanker H, Bernhard G (2007) Radiochim Acta 95:143–149CrossRefGoogle Scholar
  26. 26.
    Steudtner R (2009) Interaction between uranium and selected bioligands. TU Dresden (in preparation)Google Scholar
  27. 27.
    Bell JT, Biggers RE (1965) J Mol Spectrosc 18:247–275CrossRefGoogle Scholar
  28. 28.
    Billard I, Ansoborlo E, Apperson K, Arpigny S, Azenha ME, Birch D, Bros P, Burrows HD, Choppin G, Couston L, Dubois V, Fanghanel T, Geipel G, Hubert S, Kim JI, Kimura T, Klenze R, Kronenberg A, Kumke M, Lagarde G, Lamarque G, Lis S, Madic C, Meinrath G, Moulin C, Nagaishi R, Parker D, Plancque G, Scherbaum F, Simoni E, Sinkov S, Viallesoubranne C (2003) Appl Spectrosc 57:1027–1038CrossRefGoogle Scholar
  29. 29.
    Eliet V, Grenthe I, Bidoglio G (2000) Appl Spectrosc 54:99–105CrossRefGoogle Scholar
  30. 30.
    Moulin C, Laszak I, Moulin V, Tondre C (1998) Appl Spectrosc 52:528–535CrossRefGoogle Scholar
  31. 31.
    Kato Y, Meinrath G, Kimura T, Yoshida Z (1994) Radiochimica Acta 64:107–111Google Scholar
  32. 32.
    Eliet V, Bidogloi G, Omenetto N, Parma L, Grenthe I (1995) J Chem Soc Faraday Trans 91:2275–2285CrossRefGoogle Scholar
  33. 33.
    Wang Z, Zachara JM, Yantasee W, Gassman PL, Liu CX, Joly AG (2004) Environ Sci Technol 38:5591–5597CrossRefGoogle Scholar
  34. 34.
    Lotnik SV, Khamidullina LA, Kazakov VP (2003) Radiochemistry 45:555–558CrossRefGoogle Scholar
  35. 35.
    Wolery T (1992) Technical report UCRL-MA-10662 PT I ed. Lawrence Livermore National Laboratory, Livermore, CA, USAGoogle Scholar
  36. 36.
    Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux. Elsevier, FranceGoogle Scholar
  37. 37.
    O’Haver TC, Green GL (1976) Anal Chem 48:312–318CrossRefGoogle Scholar
  38. 38.
    Meinrath G (1997) J Radioanal Nucl Chem 224:119–126CrossRefGoogle Scholar
  39. 39.
    Grenthe I, Fuger J, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (1992) Chemical thermodynamics of uranium, 1st edn. Elsevier Science Publishers B. V, AmsterdamGoogle Scholar
  40. 40.
    Kilde G, Wynnejones WFK (1953) Trans Faraday Soc 49:243–251CrossRefGoogle Scholar
  41. 41.
    Gampp H, Maeder M, Meyer CJ, Zuberbühler AD (1985) Talanta 32:257–264Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Robin Steudtner
    • 1
    Email author
  • Thuro Arnold
    • 1
  • Gerhard Geipel
    • 1
  • Gert Bernhard
    • 1
  1. 1.FZ Dresden-Rossendorf e.V.Institute of RadiochemistryDresdenGermany

Personalised recommendations