Journal of Radioanalytical and Nuclear Chemistry

, Volume 283, Issue 3, pp 593–596

Intertidal mangrove mudflat 240+239Pu signatures, confirming a 210Pb geochronology on the southeastern coast of Brazil

  • C. J. Sanders
  • J. M. Smoak
  • L. M. Sanders
  • M. N. Waters
  • S. R. Patchineelam
  • M. E. Ketterer
Article

Abstract

A sediment core was taken to determine if sediment accumulation rates could be conducted using 240+239Pu signatures in the coastal mangrove mudflats of southeastern Brazil. The results from this study show that 240+239Pu fallout activities are sufficient and well preserved in the coastal sediments of this region. Sediment accumulation rates determined from the 240+239Pu signatures were 4.4 mm/year and 4.1 from 210Pb (CIC) method. A sediment mixing coefficient rate was calculated using chlorophyll-a profile (9.5 cm2).

Keywords

240+239Pu 210Pb 226Ra Brazil 

References

  1. 1.
    Sanders CJ, Santos IR, Silva EV, Patchineelam SR (2006) Mar Pollut Bull 52:1089Google Scholar
  2. 2.
    Saito RT, Figueira RCL, Tessier MG, Cunha IIL (2001) Radioanal Nucl Chem 249:251CrossRefGoogle Scholar
  3. 3.
    Kelley JM, Bond LA, Beasley TM (1999) Sci Total Environ 237/238:483CrossRefGoogle Scholar
  4. 4.
    Zheng J, Yamada M (2004) Environ Sci Tech 38:3498CrossRefGoogle Scholar
  5. 5.
    Nittrouer CA, Sternberg RW (1981) Mar Geol 42:201CrossRefGoogle Scholar
  6. 6.
    Sanders CJ, Smoak JM, Naidu AS, Patchineelam SR (2008) J Coastal Res 24:536CrossRefGoogle Scholar
  7. 7.
    Smoak JM, Patchineelam SR (1999) Mangroves Salt Marshes 3:17CrossRefGoogle Scholar
  8. 8.
    Lynch CJ, Meriwether JR, McKee BA, Vera-Herrera F, Twilley RR (1989) Estuaries 12:284CrossRefGoogle Scholar
  9. 9.
    Sun M, Aller R, Lee C (1991) J Mar Res 49:379CrossRefGoogle Scholar
  10. 10.
    Holmer M (1999) Estuarine Coastal Shelf Sci 48:383CrossRefGoogle Scholar
  11. 11.
    Ketterer ME, Hafer KM, Jones VJ, Appleby PG (2004) Sci Total Environ 322:221CrossRefGoogle Scholar
  12. 12.
    Appleby PG, Nolan PJ, Oldfield F, Richardson N, Higgitt SR (1988) Sci Total Environ 68:157Google Scholar
  13. 13.
    Cutshall NH, Larsen IL, Olsen CR (1982) Nuc Inst Meth 206:309CrossRefGoogle Scholar
  14. 14.
    Appleby PG, Oldfield F (1992) In: Ivanovich M, Harmon S (eds) Uranium series disequilibrium: application to earth, marine and environmental Science. Oxford Science Publications, London, pp 731–783Google Scholar
  15. 15.
    Leavitt PR, Hodgson DA (2001) In: Smol JP, Birks HJP, Last WM (eds) Tracking environmental change using lake sediments, terrestrial, algal, and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 295–325CrossRefGoogle Scholar
  16. 16.
    Ravichandran M, Baskaran M, Santshi P, Bianchi T (1995) Chem Geol 125:291CrossRefGoogle Scholar
  17. 17.
    Carpenter R, Peterson ML, Bennett JT, Somayajulu BLK (1984) Geochim Cosmochim Acta 48:1949CrossRefGoogle Scholar
  18. 18.
    DeMaster DJ, McKee BA, Nittrouer CA, Jiangchu Q, Guodong C (1985) Cont Shelf Res 4:143CrossRefGoogle Scholar
  19. 19.
    Godoy JM, Carvalho ZL, Fernandes FC, Danelon OM, Ferreira ACM, Roldao LA (2003) J Environ Radioactivity 70:193CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • C. J. Sanders
    • 1
  • J. M. Smoak
    • 2
  • L. M. Sanders
    • 2
  • M. N. Waters
    • 3
  • S. R. Patchineelam
    • 1
  • M. E. Ketterer
    • 4
  1. 1.Departamento de GeoquímicaUniversidade Federal de Fluminense (UFF)NiteróiBrazil
  2. 2.Environmental ScienceUniversity of South Florida (USF)St. PetersburgUSA
  3. 3.Natural SciencesShorter CollegeRomeUSA
  4. 4.Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations