Advertisement

Microscopic evaluation of contaminants in ultra-high purity copper

  • E. W. Hoppe
  • E. E. Mintzer
  • C. E. Aalseth
  • D. J. Edwards
  • O. T. FarmerIII
  • J. E. Fast
  • D. C. Gerlach
  • M. Liezers
  • H. S. Miley
Article

Abstract

Copper is one of few elements that have no long-lived radioisotopes and which can be electrodeposited to ultra-high levels of purity. Experiments probing neutrino properties and searching for direct evidence of dark matter require ultra-clean copper, containing the smallest possible quantities of radioactive contaminants. Important to the production of such copper is establishing the location and dispersion of contamination within the bulk material. Co-deposition of contaminants during copper electrodeposition and its relationship to nucleation and growth processes were investigated using scanning electron microscopy (SEM), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and secondary ionization mass spectrometry (SIMS).

Keywords

Copper EBSD Electrodeposition LA-ICP-MS SEM SIMS Thorium Uranium 

Notes

Acknowledgements

The authors would like to acknowledge the NNSA Office of Research and Engineering (NA-22) for their support of this work and Chuck Windisch for his technical assistance. Pacific Northwest National Laboratory is managed by Battelle Memorial Institute under contract DE-AC05-76RLO1830.

References

  1. 1.
    Aalseth CE, Brodzinski RL, Farmer OT III, Hoppe EW, Hossbach TW, Miley HS (2005) AIP Conf Proc, p 785Google Scholar
  2. 2.
    Brodzinski RL, Miley HS, Reeves JH, Avignone FT (1995) J Radioanal Nucl Chem 193:61CrossRefGoogle Scholar
  3. 3.
    Aalseth CE, Farmer OT III, Fast JE, Hoppe EW, Hossbach TW, Kephart JD, Litke KE, Liezers M, Miley HS, Mintzer EE, Reeves JH (submitted) Nucl Instrum Methods Phys Res AGoogle Scholar
  4. 4.
    Stangl M, Acker J, Oswald S, Uhlemann M, Gemming T, Baunack S, Wetzig K (2007) Microelectron Eng 84:54CrossRefGoogle Scholar
  5. 5.
    Hope GA, Brown GM, Schweinsberg DP, Shimizu K, Kobayashi K (1995) J Appl Electrochem 25:890CrossRefGoogle Scholar
  6. 6.
    Buelens C, Celis JP, Roos JR (1983) J Appl Electrochem 13:541CrossRefGoogle Scholar
  7. 7.
    Breckenridge JH, Harris WE (1970) Can J Chem 48:1934CrossRefGoogle Scholar
  8. 8.
    Hoppe EW, Seifert A, Aalseth CE, Bachelor PP, Day AR, Edwards DJ, Hossbach TW, Litke KE, Mcintyre JI, Miley HS, Schulte SM, Smart JE, Warren GA (2007) Nucl Instrum Methods Phys Res A 579:486CrossRefGoogle Scholar
  9. 9.
    Zhou Z, O’Keefe TJ (1998) J Appl Electrochem 28:461CrossRefGoogle Scholar
  10. 10.
    Detavernier C, Rossnagel S, Noyan C, Guha S, Cabral C Jr, Lavoie C (2003) J Appl Phys 94:2874CrossRefGoogle Scholar
  11. 11.
    Lagrange S, Brongersma SH, Judelewicz M, Saerens A, Vervoort I, Richard E, Palmans R, Maex K (2000) Microelectron Eng 50:449CrossRefGoogle Scholar
  12. 12.
    Brongersma SH, Kerr E, Vervoort I, Saerens A, Maex K (2002) J Mater Res 17:582CrossRefGoogle Scholar
  13. 13.
    Hope GA, Woods R (2004) J Electrochem Soc 151:C550CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • E. W. Hoppe
    • 1
  • E. E. Mintzer
    • 1
  • C. E. Aalseth
    • 1
  • D. J. Edwards
    • 1
  • O. T. FarmerIII
    • 1
  • J. E. Fast
    • 1
  • D. C. Gerlach
    • 1
  • M. Liezers
    • 1
  • H. S. Miley
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations