Journal of Radioanalytical and Nuclear Chemistry

, Volume 282, Issue 3, pp 1019–1026 | Cite as

Frequency distribution, isotopic composition and physical characterization of plutonium-bearing particles from the Fig-Quince zone on Runit Island, Enewetak Atoll

  • Terry F. Hamilton
  • Jussi Jernströem
  • Roger E. Martinelli
  • Steven R. Kehl
  • Mats Eriksson
  • Ross W. Williams
  • Marek Bielewski
  • Ariel N. Rivers
  • Thomas A. Brown
  • Scott J. Tumey
  • Maria Betti


Runit Island on Enewetak Atoll was very heavily impacted by the U.S. nuclear testing campaign in the northern Marshall Islands (1946–58). The primary source of contamination on Runit Island was the 1958 Quince safety test where a large quantity of device plutonium (Pu) was scattered over the area near the GZ. A second low-yield device was detonated on the same site 10 days later, further disturbing the soil and leaving behind a very heterogeneous pattern of contamination including milligram-size particles of plutonium. A limited cleanup of the Fig-Quince zone was carried out in 1979. During this period, the effectiveness of the cleanup operations was primarily evaluated on the basis of bulk soil concentration data with little consideration given to the heterogeneity and long-term material-, biological-, and environmental-specific impacts of residual high activity (hot) particle contamination. The aim of the present study was twofold; (i) to characterize the levels and distribution of residual contamination in the Fig-Quince zone, and (ii) to develop pertinent data on the frequency distribution, elemental and isotopic composition, and physico-chemical properties of hot particles isolated from surface soils from Fig-Quince with a view towards providing recommendations on the future management and possible cleanup of the site. Today, Runit Island remains under an administrative quarantine.


Radioactive particles 239Pu 240Pu 241Pu 242Pu 244Pu 241Am Runit Island Enewetak Atoll Marshall Islands Gamma-spectrometry SR-μ-XRF SEM-EDX SIMS MCICP-MS AMS Soil particle size fractionation 



The Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.


  1. 1.
    UNSCEAR (2000) Sources and effects of ionizing radiation. United States Scientific Committee on the effects of atomic radiation, UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, Vol 1: sources. United Nations, New York, 654 ppGoogle Scholar
  2. 2.
    Noshkin VE, Robison WL (2007) Health Phys 73:234CrossRefGoogle Scholar
  3. 3.
    Hamilton TF (2004) Linking legacies of the cold war to arrival of anthropogenic radionuclides in the oceans through the 20th century. In: Livingston HD (ed) Marine radioactivity, vol 6. Elsevier Science, Amsterdam, pp 30–87Google Scholar
  4. 4.
    U.S. Department of Energy (1982) Enewetak radiological Support Project, Final Report. In: B Freisen (ed) U.S. DOE, Nevada Operations Office, NVO-213, Las Vegas, Nevada, pp 336–369Google Scholar
  5. 5.
    Davisson ML, Hamilton TF (2008) Report LLNL-TR-403015, Lawrence Livermore National Laboratory, 50 ppGoogle Scholar
  6. 6.
    Statcher JW, Ansoborilo E, Phipps AW (2000) Radiat Prot Dosimetry 92:201Google Scholar
  7. 7.
    Ansoborlo E, Statcher J (2000) Radiat Prot Dosimetry 92:139Google Scholar
  8. 8.
    Salbu B (2000) Radiat Prot Dosimetry 92:49Google Scholar
  9. 9.
    Salbu B (2008) Actinides in the environment. In: Kudo A (ed) Plutonium in the environment, vol 1. Elsevier, Oxford, pp 121–138CrossRefGoogle Scholar
  10. 10.
    Betti M, Eriksson M, Jernström J, Tamborini G (2008) Analysis of environmental radioactivity. In: Povenic PP (ed) Radioactivity in the environment, vol 11. Elsevier, Oxford, pp 355–370Google Scholar
  11. 11.
    Madjoukov IG, Burns K, Madjoukova B, Vapirev EI, Tsacheva T (1992) Radiat Prot Dosimetry 40:235Google Scholar
  12. 12.
    Sadalls FJ, Segal MG, Victorva N (1993) J Environ Radioact 18:5CrossRefGoogle Scholar
  13. 13.
    Dorrian MD (1997) Radiat Prot Dosimetry 69:117Google Scholar
  14. 14.
    Salbu B, Krekling T, Oughton D (1998) Analyst 123:843CrossRefGoogle Scholar
  15. 15.
    Salbu B, Janssens K, Kreklin T, Oughton D (1999) Micro-X-ray absorption tomography and micro-XANES for characterization of fuel particles.
  16. 16.
    Cuddihy RG, Finch GL, Newton GJ, Hahn FF, Mewhinney JA, Rotenberg SJ, Powers DA (1989) Environ Sci Technol 23:89CrossRefGoogle Scholar
  17. 17.
    Van Der Veen J, Van Der Wijk A, Mook WG (1996) Nature 323:399CrossRefGoogle Scholar
  18. 18.
    Salbu B, Krekling T, Lind OC, Oughton DH, Drakopoulos M, Simionovici A, Snigirev I, Snigirev A, Weitkamp T, Adams F, Janssens K, Kashparov VA (2001) Nucl Instrum Methods Phys Res A 467–468:1249CrossRefGoogle Scholar
  19. 19.
    Salbu B, Janssens K, Lind OC, Proost K, Danesi PR (2003) J Environ Radioact 64:167CrossRefGoogle Scholar
  20. 20.
    Salbu B, Lind OC, Skipperud L (2004) J Environ Radioact 74:233CrossRefGoogle Scholar
  21. 21.
    Jernström J, Eriksson M, Osán J, Tamborini G, Török Sz, Simon R, Falkenberg G, Alsecz A, Betti M (2004) J Anal At Spectrom 19:1428CrossRefGoogle Scholar
  22. 22.
    Eriksson M, Osán J, Jernström J, Wegrzynek D, Simon R, Chinea-Cano E, Markowicz A, Bamford S, Tamborini G, Török Sz, Falkenberg GG, Alsecz A, Dahgaard H, Wobrauschek P, Streli C, Zeoger N, Betti M (2005) Spectrochim Acta Part B 60:455CrossRefGoogle Scholar
  23. 23.
    Pöllanen R, Ketterer ME, Lehto S, Hokkanen M, Ikaheimonen TK, Siiskonen T, Moring M, Rubio Montero MP, Martin Sanchez A (2006) J Environ Radioact 90:15CrossRefGoogle Scholar
  24. 24.
    Jernström J, Eriksson M, Simon R, Tamborini G, Bildstein O, Carlos Marquez R, Kehl SR, Hamilton TF, Ranebo Y, Betti M (2006) Spectrochim Acta Part B 61:971CrossRefGoogle Scholar
  25. 25.
    Bielewski M, Eriksson M, Himbert J, Betti M, Falkenberg IG, Hamilton TF (submitted) Spectrochim Acta Part BGoogle Scholar
  26. 26.
    Martinelli RE, Hamilton TF, Williams RW, Kehl SR (this issue) J Radioanal Nucl ChemGoogle Scholar
  27. 27.
    Eriksson M, Ljunggren L, Hindorf C (2002) Nucl Instrum Methods Phys Res A 488:375CrossRefGoogle Scholar
  28. 28.
    Simon R, Buth G, Hagelstein M (2003) Nucl Instrum Methods Phys Res B 199:554CrossRefGoogle Scholar
  29. 29.
    Tamborini G, Betti M, Forcina V, Hiernaut T, Giovannone B, Koch L (1998) Spectrochim Acta Part B 53:1289CrossRefGoogle Scholar
  30. 30.
    Defense Nuclear Agency (1981) The radiological cleanup of Enewetak Atoll. Washington DC, 700 ppGoogle Scholar
  31. 31.
    Robison WL, Noshkin VE, Hamilton TF, Conrado CL, Bogen KT (2001) Report UCRL-LR-143980. Lawrence Livermore National Laboratory, 21 ppGoogle Scholar
  32. 32.
    Eriksson M (2002) On weapons plutonium in the arctic environment (Thule, Greenland). Ph.D. Thesis, Risø-R-1321, Risø National Laboratory, Roskilde, Denmark, 146 ppGoogle Scholar
  33. 33.
    Shevchenko SV (2004) Appl Radiat Isot 61:1303CrossRefGoogle Scholar
  34. 34.
    Bielewski M, Eriksson M, Himbert J, Simon R, Betti M, Hamilton TF (2007) Annual report of the synchrotron facility ANKA at the Forschungszentrum Karlsruhe, Germany, 2 ppGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Terry F. Hamilton
    • 1
  • Jussi Jernströem
    • 2
  • Roger E. Martinelli
    • 1
  • Steven R. Kehl
    • 1
  • Mats Eriksson
    • 3
  • Ross W. Williams
    • 4
  • Marek Bielewski
    • 5
  • Ariel N. Rivers
    • 1
  • Thomas A. Brown
    • 1
  • Scott J. Tumey
    • 1
  • Maria Betti
    • 3
  1. 1.Center for Accelerator Mass SpectrometryLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Radiation Research Division, Risø National Laboratory for Sustainable EnergyTechnical University of Denmark (DTU)RoskildeDenmark
  3. 3.IAEA Marine Environment Laboratory (IAEA-MEL)International Atomic Energy AgencyMonaco CedexMonaco
  4. 4.Chemical Sciences DivisionLawrence Livermore National LaboratoryLivermoreUSA
  5. 5.Institute for Transuranium Elements, EC DG JRCKarlsruheGermany

Personalised recommendations