Production of 88,89Zr by proton induced activation of natY and separation by SLX and LLX



natY foil was irradiated by 20 MeV proton to produce no-carrier-added 88,89Zr. A comparative evaluation on radioanalytical separation methods of 88,89Zr was carried out from irradiated target matrix by both liquid–liquid (LLX) and solid–liquid (SLX) extraction methods using di-(2-ethylhexyl) phosphoric acid (HDEHP) dissolved in cyclohexane as liquid cation exchanger and Dowex 50W-X8 H+ form (20–50 mesh) as solid cation exchanger. Both the methods offer good separation and high yield of nca 88,89Zr but SLX offers much higher separation factor and better yield.


nat88,89Zr Proton irradiation LLX SLX HDEHP Dowex 50W-X8 


  1. 1.
    Dejesus, O.T., Nickles, R.J.: Production and purification of 89Zr, a potential PET antibody label. Appl. Radiat. Isot. 41, 789−790 (1990)CrossRefGoogle Scholar
  2. 2.
    Zweit, J., Downey, S., Sharma, H.L.: Production of no-carrier added zirconium-89 for positron emission tomography. Appl. Radiat. Isot. 42, 199−201 (1991)CrossRefGoogle Scholar
  3. 3.
    Meijs, W.E., Herscheid, J.D.M., Haisma, H.J., Pinedo, H.M.: Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Appl. Radiat. Isot. 43, 1443−1447 (1992)CrossRefGoogle Scholar
  4. 4.
    Meijs, W.E., Herscheid, J.D.M., Haisma, H.J., Wijbrandts, R., Langevelde, F.V., Leuffen, P.J.V., Moody, R., Pinedo, H.M.: Production of highly pure no-carrier added 89Zr for labelling of antibodies with a positron emitter. Appl. Radiat. Isot. 45, 1143−1147 (1994)CrossRefGoogle Scholar
  5. 5.
    Meijs, W.E., Haisma, H.J., Schors, R.V.D., Wijbrandts, R., Oever, K.V.D., Klok, R.P., Pinedo, H.M., Hercheid, J.D.M.: A facile method for the labeling of proteins with zirconium isotopes. Nucl. Med. Biol. 23, 439−448 (1996)CrossRefGoogle Scholar
  6. 6.
    Meijs, W.E., Haisma, H.J., Klok, R.P., Van Gog, F.B., Keivit, E., Pinedo, H.M., Herscheid, J.D.M.: Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J. Nucl. Med. 38, 112−118 (1997)Google Scholar
  7. 7.
    Verel, I., Visser, G.W.M., Boellaard, R., Walsum, M.S., Snow, G.B., Van Dongen, G.A.M.S.: 89Zr immuno-PET: Comprehensive procedures for the production of 89Zrlabeled monoclonal antibodies. J. Nucl. Med. 44, 1271−1281 (2003)Google Scholar
  8. 8.
    Mealey, J.: Turn-over of carrier-free zirconium-89 in man. Nature 179, 673−674 (1957)CrossRefGoogle Scholar
  9. 9.
    Johnson, C.H., Kernell, R.L., Ramavataram, S.: The 89Y(p,n)89Zr cross section near the first two analogue resonances. Nucl. Phys. A107, 21−34 (1968)Google Scholar
  10. 10.
    Turcotte, R., Iafigliola, R., Moore, R.B., Lee, J.K.P.: The level structure of 87Zr. Nucl. Phys. A198, 67−72 (1972)Google Scholar
  11. 11.
    Link, J.M., Krohn, K.A., Eary, J.F., Kishore, R., Lewellen, T.K., Johnson, M.W., Badger, C.C., Richter, K.Y., Nelp, W.B.: 89Zr for antibody labelling and positron tomography. J. Label. Comp. Radiopharm. 23, 1296−1297 (1986)Google Scholar
  12. 12.
    Mustafa, M.G., West, H.I., O’brien, H., Lanier, R.G., Benhamou, M., Tamura, T.: Measurements and a direct-reaction-plus-Hauser–Feshbach analysis of 89Y(p,n)89Zr, 89Y(p,2n)88Zr and 89Y(p,pn)88Y reactions up to 40 MeV. Phys. Rev. C 38, 1624−1637 (1988)CrossRefGoogle Scholar
  13. 13.
    Uddin, M.S., Hagiwara, M., Baba, M., Tarkanyi, F., Ditroi, F.: Experimental studies on excitation functions of the proton-induced activation reactions on yttrium. Appl. Radiat. Isot. 63, 367−374 (2005)CrossRefGoogle Scholar
  14. 14.
    Kandil, S.A., Scholten, B., Saleh, Z.A., Youssef, A.M., Qaim, S.M., Coenen, H.H.: A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J. Radioanal. Nucl. Chem. 274, 45−52 (2007)CrossRefGoogle Scholar
  15. 15.
    Corazza, C., Nassiff, S.J.: Cross sections and isomer ratios for the isomeric pair 90mY and 90gY in the 89Y (d,p) reaction. Radiochim. Acta 15, 7−9 (1971)Google Scholar
  16. 16.
    La Gamma, A.M., Nassiff, S.J.: Excitation functions for deuteron-induced reactions on 89Y. Radiochim. Acta 19, 161−162 (1973)Google Scholar
  17. 17.
    Bissem, H.H., Georgi, R., Scobel, W., Ernst, J., Kaba, M., Rama Rao, J., Strohe, H.: Entrance and exit channel phenomena in d- and 3He-induced preequilibrium decay. Phys. Rev. C 22, 1468−1484 (1980)CrossRefGoogle Scholar
  18. 18.
    Degering, D., Unterricker, S., Stolz, W.: Excitation function of the 89Y(d,2n)89Zr reaction. J. Radioanal. Nucl. Chem. Lett. 127, 7−11 (1988)CrossRefGoogle Scholar
  19. 19.
    Uddin, M.S., Baba, M., Hagiwara, M., Tarkanyi, F., Ditroi, F.: Experimental determination of deuteron-induced activation cross sections of yttrium. Radiochim. Acta 95, 187−192 (2007)CrossRefGoogle Scholar
  20. 20.
    Lahiri, S., Mukhopadhyay, B., Das, N.R.: Simultaneous production of 89Zr and 90,91m,92mNb in α-particle activated yttrium and their subsequent separation by HDEHP. Appl. Radiat. Isot. 48, 883−886 (1997)CrossRefGoogle Scholar
  21. 21.
    Lahiri, S., Mukhopadhyay, B., Das, N.R.: Simultaneous production of 89Zr and 90,91m,92mNb in α-particle activated yttrium and their subsequent separation by TOA. J. Radioanal. Nucl. Chem. 218, 229−231 (1997)CrossRefGoogle Scholar
  22. 22.
    Verweij, W.: Cheaqs Pro: a program for calculating chemical equilibria in aquatic systems. (2005)

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations