Journal of Radioanalytical and Nuclear Chemistry

, Volume 281, Issue 3, pp 425–432

A new method for the determination of plutonium and americium using high pressure microwave digestion and alpha-spectrometry or ICP-SMS

  • Fabienne Luisier
  • José Antonio Corcho Alvarado
  • Philipp Steinmann
  • Michael Krachler
  • Pascal Froidevaux
Article

Abstract

Plutonium and americium are radionuclides particularly difficult to measure in environmental samples because they are α-emitters and therefore necessitate a careful separation before any measurement, either using radiometric methods or ICP-SMS. Recent developments in extraction chromatography resins such as Eichrom® TRU and TEVA have resolved many of the analytical problems but drawbacks such as low recovery and spectral interferences still occasionally occur. Here, we report on the use of the new Eichrom® DGA resin in association with TEVA resin and high pressure microwave acid leaching for the sequential determination of plutonium and americium in environmental samples. The method results in average recoveries of 83 ± 15% for plutonium and 73 ± 22% for americium (n = 60), and a less than 10% deviation from reference values of four IAEA reference materials and three samples from intercomparisons exercises. The method is also suitable for measuring 239Pu in water samples at the μBq/l level, if ICP-SMS is used for the measurement.

Keywords

Plutonium Americium Microwaves digestion TEVA resin DGA resin ICP-SMS 

References

  1. 1.
    UNSCEAR: Ionizing radiation: sources and biological effects. In: Annex, E. (ed.) Exposures Resulting from Nuclear Explosions. Report to the General Assembly, pp. 211–248. United Nations Scientific Committee on the Effects of Atomic Radiation, New York (1982)Google Scholar
  2. 2.
    Goutelard, F., Morello, M., Calmet, D.: Alpha-spectrometry measurement of Am and Cm at trace levels in environmental samples using extraction chromatography. J. Alloys Compd. 271, 25–30 (1998)CrossRefGoogle Scholar
  3. 3.
    Maxwell, S.L., Culligan, B.K.: Rapid column extraction method for actinides in soil. J. Radioanal. Nucl. Chem. 270, 699–704 (2006)CrossRefGoogle Scholar
  4. 4.
    Mihai, S.A.: Sediment sample preparation for the determination of Pu and Am isotopes. J. Radioanal. Nucl. Chem. 266, 259–264 (2005)CrossRefGoogle Scholar
  5. 5.
    Maxwell, S.L., Faison, D.M.: Rapid column extraction method for actinides and strontium in fish and other animal tissue samples. J. Radioanal. Nucl. Chem. 275, 605–612 (2008)CrossRefGoogle Scholar
  6. 6.
    Becker, J.S., Zoriy, M., Halicz, L., Teplyakov, N., Muller, C., Segal, I., Pickhardt, C., Platzner, I.T.: Environmental monitoring of plutonium at ultratrace level in natural water (Sea of Galilee-Israel) by ICP-SFMS and MC-ICP-MS. J. Anal. At. Spectrom. 19, 1257–1261 (2004)CrossRefGoogle Scholar
  7. 7.
    Donard, O.F.X., Bruneau, F., Moldovan, M., Garraud, H., Epov, V.N., Boust, D.: Multi-isotopic determination of plutonium (Pu-239, Pu-240, Pu-241 and Pu-242) in marine sediments using sector-field inductively coupled plasma mass spectrometry. Anal. Chim. Acta 587, 170–179 (2007)CrossRefGoogle Scholar
  8. 8.
    Froidevaux, P., Haldimann, M.: Plutonium from above-ground nuclear tests in milk teeth: investigation of placental transfer in children born between 1951 and 1995 in Switzerland. Environ. Health Perspect. 116, 1731–1734 (2008)CrossRefGoogle Scholar
  9. 9.
    Croudace, I., Warwick, P., Taylor, R.N., Dee, S.: Rapid procedure for plutonium and uranium determination in soils using a borate fusion followed by ion-exchange and extraction chromatography. Anal. Chim. Acta 371, 217–225 (1998)CrossRefGoogle Scholar
  10. 10.
    Michel, H., Levent, D., Barci, V., Barci-Funel, G., Hurel, C.: Soil and sediment sample analysis for the sequential determination of natural and anthropogenic radionuclides. Talanta 74, 1527–1533 (2008)CrossRefGoogle Scholar
  11. 11.
    Penrose, W.R., Polzer, W.L., Essington, E.H., Nelson, D.M., Orlandini, K.A.: Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ. Sci. Technol. 24, 228–234 (1990)CrossRefGoogle Scholar
  12. 12.
    Bossew, P., Lettner, H., Hubmer, A., Erlinger, C., Gastberger, A.: Activity ratios of Cs-137, Sr-90 and Pu239+240 in environmental samples. J. Environ. Radioact. 97, 5–19 (2007)CrossRefGoogle Scholar
  13. 13.
    Hrnecek, E., Jakopic, R., Wallner, A., Steier, P.: Combined method for the determination of the isotopic vector of plutonium isotopes in environmental samples. J. Radioanal. Nucl. Chem. 276, 789–793 (2008)CrossRefGoogle Scholar
  14. 14.
    Maxwell, S.L.: Rapid column extraction method for actinides and Sr-89/90 in water samples. J. Radioanal. Nucl. Chem. 267, 537–543 (2006)CrossRefGoogle Scholar
  15. 15.
    Moody, C.A., Glover, S.E., Stuit, D.B., Filby, R.H.: Pre-concentration and separation of thorium, uranium, plutonium and americium in human soft tissues by extraction chromatography. J. Radioanal. Nucl. Chem. 234, 183–187 (1998)CrossRefGoogle Scholar
  16. 16.
    Pilvio, R., Bickel, M.: Actinoid separations by extraction chromatography. Appl. Radiat. Isot. 53, 273–277 (2000)CrossRefGoogle Scholar
  17. 17.
    Lee, S.H., La Rosa, J., Gastaud, J., Povinec, P.P.: The development of sequential separation methods for the analysis of actinides in sediments and biological materials using anion-exchange resins and extraction chromatography. J. Radioanal. Nucl. Chem. 263, 419–425 (2005)Google Scholar
  18. 18.
    Toribio, M., Garcia, J.F., Rauret, G., Pilvio, R., Bickel, M.: Plutonium determination in mineral soils and sediments by a procedure involving microwave digestion and extraction chromatography. Anal. Chim. Acta 447, 179–189 (2001)CrossRefGoogle Scholar
  19. 19.
    Horwitz, E.P., McAlister, D.R., Bond, A.H., Barrans, R.E.: Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr. Ion Exch. 23, 319–344 (2005)CrossRefGoogle Scholar
  20. 20.
    Maxwell, S.L., Culligan, B.K.: Rapid column extraction method for actinides in soil. J. Radioanal. Nucl. Chem. 270, 699–704 (2006)CrossRefGoogle Scholar
  21. 21.
    Maxwell, S.L.: Rapid method for determination of plutonium, americium and curium in large soil samples. J. Radioanal. Nucl. Chem. 275, 395–402 (2008)CrossRefGoogle Scholar
  22. 22.
    Bundesamt für Strahlenshutz (2008) Bestimmung von alpha-Strahlern im Wasser. Fachbereich Strahlenschutz und Umwelt, B, ed. (2008)Google Scholar
  23. 23.
    PROCORAD: Radiotoxicological intercomparison exercices. Transuranium actinides in fecal ash (2008)Google Scholar
  24. 24.
    PROCORAD: Radiotoxicological intercomparison exercices. Transuranium actinides in urines (2001)Google Scholar
  25. 25.
    Bajo, S., Eikenberg, J.: Electrodeposition of actinides for alpha-spectrometry. J. Radioanal. Nucl. Chem. 242, 745–751 (1999)CrossRefGoogle Scholar
  26. 26.
    Zheng, J., Yamada, M.: Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS. J. Environ. Monit. 7, 792–797 (2005)CrossRefGoogle Scholar
  27. 27.
    Solovitch-Vella, N., Pourcelot, L., Chen, V.T., Froidevaux, P., Gauthier-Lafaye, F., Stille, P., Aubert, D.: Comparative migration behaviour of 90Sr, 239+240Pu and 241Am in mineral and organic soils of France. Appl. Geochem. 22, 2526–2535 (2007)CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Fabienne Luisier
    • 1
  • José Antonio Corcho Alvarado
    • 1
  • Philipp Steinmann
    • 2
  • Michael Krachler
    • 3
  • Pascal Froidevaux
    • 1
  1. 1.University Institute of Radiation PhysicsUniversity Hospital Center, University of LausanneLausanneSwitzerland
  2. 2.Consumer Protection, Radiation ProtectionSwiss Federal Office of Public HealthBernSwitzerland
  3. 3.Institute of GeosciencesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations