Sorption and desorption of 125I-, 137Cs+, 85Sr2+ and 152,154Eu3+ on disturbed soils under dynamic flow and static batch conditions

Article

Abstract

Sorption of radionuclides on homogenized soils (under 2.5 mm grain size) from synthetic groundwater of 8·10−3M ionic strength and pH 8.5 has been studied under dynamic (flow) and static (batch) conditions. The corresponding water-soluble compounds, as carriers in the 10−6 mol/dm3 concentration, were added into the SGW prior to the experiments. Soil samples were taken from several locations around the environment of the High Level Waste Storage Facility at Nuclear Research Institute Řež plc in 5–100 cm depth. The dynamic experiments were carried out in columns made of PP+PE injection syringes of 17.8 cm length and 2.1 cm in diameter. A multi-head peristaltic pump was used for pumping the water upward through the columns at a seepage velocity of about 0.06 cm/min in average. The radioactive nuclides were added into the water stream individually in a form of a short pulse in 0.1 cm3 of demineralized water. Dynamic desorption experiments were performed with the same experimental arrangement using a mixture of 10−2N H2SO4 and 10−2N HNO3 in a volume ratio of 2: 1. Retardation, distribution and hydrodynamic dispersion coefficients during transport of radionuclides were determined by the evaluation of the integral form of a simple advection-dispersion equation, used for fitting experimental data and modeling the theoretical sorption breakthrough and desorption displacement curves. The static experiments were realized in 100 cm3 plastic bottles stirring 5 g of soil samples with SGW occasionally in a soil to SGW ratio of 1: 10 (m/V). Kinetic parameters including equilibrium sorption activity, activity transfer rate constants and sorption half-times were also determined. The results of dynamic experiments were compared with static sorption experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Cadelli, G. Cottone, S. Orlowski, G. Bertozzi, F. Girardi, A. Saltelli, Performance Assessment of Geological Isolation Systems (PAGIS), Commission of European Communities, EUR 11775, 1988, p. 46.Google Scholar
  2. 2.
    L. Lührmann, U. Noseck, R. Storck, Spent Fuel Performance Assessment (SPA) for a Hypothetical Repository in Crystalline Formations in Germany, GRS-154, July 2000, p. 57.Google Scholar
  3. 3.
    W. R. Alexander, P. A. Smith, I. G. Mckinley, Modelling radionuclide transport in the geological environment, in Modelling Radioactivity in the Environment, E. M. Scott (Ed.), Elsevier, Amsterdam, 2003, p. 109.CrossRefGoogle Scholar
  4. 4.
    J. F. Relyea, R. J. Serne, D. Rai, Methods for Determining Radionuclide Retardation Factors. APPENDIX C, Standard method used at Pacific Northwest National Laboratory for measuring batch Kd values. 13 p. PNNL Status Report, Richland, Wa, 1980.Google Scholar
  5. 5.
    ASTM Standard, American Society for Testing and Materials, D 4319-83, 1984.Google Scholar
  6. 6.
    T. Melkior, S. Yahiaoui, S. Motellier, D. Thoby, E. Tevissen, Appl. Clay Sci., 29 (2005) 172.CrossRefGoogle Scholar
  7. 7.
    P. Mell, J. Megyeri, L. Riess, Z. Máthé, G. Hámos, K. Lázár, J. Radioanal. Nucl. Chem., 268 (2006) 411.CrossRefGoogle Scholar
  8. 8.
    J. F. Relyea, Rad. Waste Manag. Nucl. Fuel. Cycle, 3 (1982) 151.Google Scholar
  9. 9.
    R. Schulin, P. J. Wierenga, H. Fluhler, J. Leuenberger, Soil Sci. Soc. Am. J., 51 (1987) 36.CrossRefGoogle Scholar
  10. 10.
    M. G. Gutierrez, G. Bidoglio, A. Avogadro, E. Mingarro, M. D’Alessandro, Radiochim. Acta, 52/53 (1991) 213.Google Scholar
  11. 11.
    IAEA, Technical Report Series No. 413, Scientific and Technical Basis for Geological Disposal of Radioactive Wastes, IAEA Vienna, 2003.Google Scholar
  12. 12.
    M. O. Barnett, P. M. Jardine, S. C. Brooks, H. M. Selim, Soil. Sci. Soc. Amer. J., 64 (2000) 908.Google Scholar
  13. 13.
    D. J. Sims, W. S. Andrews, K. A. M. Creber, X. Wang, J. Radioanal. Nucl. Chem., 263 (2005) 619.CrossRefGoogle Scholar
  14. 14.
    S. Szenknect, C. Ardois, J. P. Gaudet, V. Barthes, J. Contam. Hydrol., 76 (2005) 139.CrossRefGoogle Scholar
  15. 15.
    J. E. Saiers, G. M. Hornberger, J. Contam. Hydrol., 22 (1996) 255.CrossRefGoogle Scholar
  16. 16.
    J. Vanderborght, H. Vereecken, Vadose Zone J., 6 (2007) 140.CrossRefGoogle Scholar
  17. 17.
    Š. Palágyi, H. Vodičková, J. Landa, J. Palágyiová, A. Laciok, J. Radioanal. Nucl. Chem, 279 (2009) 431.CrossRefGoogle Scholar
  18. 18.
    M. D’Alessandro, F. Mousty, J. Guimera, A. Illera De Llano, “In situ” Migration Tests at the Berrocal Site with Conservative Isotopic Tracers, El Berrocal Project, Topical Reports, 1999, Vol. III,9, p. 1.Google Scholar
  19. 19.
    X. Wang, J. Du, Z. Tao, Z. Fan, J. Radioanal. Nucl. Chem., 258 (2003) 133.CrossRefGoogle Scholar
  20. 20.
    Q. Hu, P. Zhao, J. E. Moran, J. C. Seaman, J. Contam. Hydrol., 78 (2005) 185.CrossRefGoogle Scholar
  21. 21.
    P. Bossew, G. Kirchner, J. Environ. Radioact., 73 (2004) 127.CrossRefGoogle Scholar
  22. 22.
    L. Dewindt, D. Pellegrini, J. Van Der Lee, J. Contam. Hydrol., 68 (2003) 165.CrossRefGoogle Scholar
  23. 23.
    M. Flury, Sz. Czigány, G. Chen, J. B. Harsh, J. Contam. Hydrol., 71 (2004) 111.CrossRefGoogle Scholar
  24. 24.
    D. Klotz, Conditioning of columns and 152Eu migration experiments, in: Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides, Second Technical Progress Report FZKA 6324, G. Buckau (Ed.), FZK, Karslruhe, 1990, p. 375.Google Scholar
  25. 25.
    Z. Hölgye, E. Schlesingerová, J. Tecl, R. Filgas, J. Environ. Radioact., 71 (2004) 115.CrossRefGoogle Scholar
  26. 26.
    Š. Palágyi, H. Vodičková, J. Landa, A. Laciok, J. Palágyiová, Transport and sorption of 85Sr and 125I in crushed crystalline rocks under dynamic flow conditions, in: 2nd Intern. Nuclear Chemistry Congress, Cancún, Mexico, April 13–18, 2008, Abstracts, p. 192.Google Scholar
  27. 27.
    C. J. Li, Z. D. Wei, Water Quality and Pollution of Groundwater, Architectural Industry Publ., Inc., Beijing (CHN), 1983, p. 165.Google Scholar
  28. 28.
    D. J. Liu, X. H. Fan, J. Radioanal. Nucl. Chem., 264 (2005) 583.CrossRefGoogle Scholar
  29. 29.
    P. Beneš, J. Mizera, Radiochim. Acta, 74 (1996) 185.Google Scholar
  30. 30.
    K. Štamberg, P. Beneš, J. Mizera, J. Dolanský, D. Vopálka, J. Radioanal. Nucl. Chem., 258 (2003) 329.CrossRefGoogle Scholar
  31. 31.
    Y. S. Ho, Scientometrics, 59 (2004) 171.CrossRefGoogle Scholar
  32. 32.
    L. Chen, X. Yu, Z. Zhao, J. Radioanal. Nucl. Chem., 274 (2007) 187.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Waste Disposal DepartmentNuclear Research Institute Řež plcHusinec-ŘežCzech Republic

Personalised recommendations