Rapid method for determination of radiostrontium in emergency milk samples

  • S. L. MaxwellIIIEmail author
  • B. K. Culligan


A new rapid separation method for radiostrontium in emergency milk samples was developed at the Savannah River Site (SRS) Environmental Bioassay Laboratory (Aiken, SC, USA) that will allow rapid separation and measurement of radiostrontium within 8 hours. The new method uses calcium phosphate precipitation, nitric acid dissolution of the precipitate to coagulate residual fat/proteins and a rapid strontium separation using Sr Resin (Eichrom Technologies, Darien, IL, USA) with vacuum-assisted flow rates. The method is much faster than the previous method that use calcination or cation-exchange pretreatment, has excellent chemical recovery, and effectively removes beta-interferences. When a 100 mL sample aliquot is used with a 20 minute count time, the method has a detection limit of 0.5 Bq·L−1, well below generic emergency action levels.


Sample Aliquot Savannah River Site Calcium Phosphate Precipitation Eichrom Technology Stable Strontium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. G. W. Inn, Proc. of the 50 th Annual Conference on Bioassay, Analytical and Environmental Radiochemistry, Cincinnati, OH, 2004, p. 113.Google Scholar
  2. 2.
    D. Stricklin, A. Tjarnhage, U. Nygren, J. Radioanal. Nucl. Chem., 251 (2002) 69.CrossRefGoogle Scholar
  3. 3.
    S. Brun, S. Bessac, D. Uridat, B. Boursier, J. Radioanal. Nucl. Chem., 253 (2002) 191.CrossRefGoogle Scholar
  4. 4.
    A. Alvarez, N. Navarro, S. Salvador, J. Radioanal. Nucl. Chem., 191 (1995) 315.CrossRefGoogle Scholar
  5. 5.
    P. Galle, Toxiques Nucleaires, 2nd ed., Masson, Paris, France, 1998.Google Scholar
  6. 6.
    S. Maxwell, J. Radioanal. Nucl. Chem., 275 (2008) 497.CrossRefGoogle Scholar
  7. 7.
    S. Maxwell, B. Culligan, J. Radioanal. Nucl. Chem., 279 (2009) in press.Google Scholar
  8. 8.
    A. Vonderheide et al., J. Anal. At. Spectrom., 19 (2004) 675.CrossRefGoogle Scholar
  9. 9.
    N. Chieco, D. Bogen (Eds), Environmental Measurements Laboratory (EML) Procedures Manual (HASL-300), 27th ed., Vol. 1, U.S. Department of Energy, New York, 1992.Google Scholar
  10. 10.
    D. Tait, G. Haase, A. Wiechen, J. Radioanal. Nucl. Chem., 226 (1997) 225.CrossRefGoogle Scholar
  11. 11.
    A. Tovedal, U. Nygren, H. Rameback, J. Radioanal. Nucl. Chem., 276 (2008) 357.CrossRefGoogle Scholar
  12. 12.
    S. Maxwell, J. Radioanal. Nucl. Chem., 267 (2006) 537.CrossRefGoogle Scholar
  13. 13.
    E. Horwitz, R. Chiarizia, M. Dietz, Solvent Extr. Ion Exch., (1992) 313.Google Scholar
  14. 14.
    L. A. Currie, Anal. Chem., 40 (1968) 586.CrossRefGoogle Scholar
  15. 15.
    W. B. Bowman, D. L. Swindle, D. L. Henderson, Health Phys., 31 (1976) 450.Google Scholar
  16. 16.
    J. Martin, K. Odell, Radioact. Radiochem., 9 (1998) No. 3, 49.Google Scholar
  17. 17.
    Tieh-Chi Chu, Jeng-Jong Wang, Yu-Ming Lin, Appl. Radiation Isotopes, 49 (1998) 1671.CrossRefGoogle Scholar
  18. 18.
    S. Brun, S. Bessac, D. Uridat, B. Boursier, J. Radioanal. Nucl. Chem., 253 (2002) 191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Washington Savannah River CompanyAikenUSA

Personalised recommendations