Leaching of spent nuclear fuel in the presence of siderophores

  • A. JohnssonEmail author
  • A. Ödegaard-Jensen
  • G. Skarnemark
  • K. Pedersen


Metal species that are dissolved in water can be transported in the environment, because they can be mobile. Microorganisms can affect metal mobility by excreting organic ligands with high metal affinity. Siderophores are organic ligands with high affinities for Fe3+. They are also able to form complexes with other metals such as actinides. Many countries plan to deposit spent nuclear fuel in deep geological repositories. Microorganisms are present in these subterranean environments and could potentially affect the repository. In this study, the effect of microbial siderophores on the dissolution behavior of two fragments of a spent nuclear fuel pellet was investigated. The commercial hydroxamate siderophore, deferoxamine mesylate (DFAM), and pyoverdin siderophores, isolated from cultures of Pseudomonas fluorescens (CCUG 32456A), were used. DFAM and lyophilized pyoverdins were dissolved in synthetic groundwater to final concentrations of 10 μM and 2.5·10−2 g·L−1, respectively. The fuel pellet fragments were kept in sealed pressure vessels at 10 bars of H2. The pyoverdin solution was first tested, followed by the DFAM solution and the pure synthetic groundwater. Samples were taken on 0, 1, 5, 9 and 14 days after changing the solution in the pressure vessels. The elemental composition of samples was analyzed by means of ICP-MS. The pyoverdin solution maintained significantly higher concentrations of Np and Pu than the pure synthetic groundwater. On the 14th day the concentrations of Np and Pu in the pure synthetic groundwater were 0.01 nM and 0.13 nM, respectively, compared to 0.02 nM and 0.31 nM in the pyoverdin solution. Furthermore, spent nuclear fuel samples were observed to release Ru in the presence of both pyoverdin and DFAM. Hence, it seems that siderophores can form complexes with elements present in spent nuclear fuel.


Pressure Vessel Nuclear Fuel Spend Nuclear Fuel Fuel Pellet Deep Geological Repository 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Winkelmann, Handbook of Microbial Iron Chelates, CRC Press, Boca Raton, 1991.Google Scholar
  2. 2.
    B. Matzanke, Structures, Coordination Chemistry and Function of Microbial Iron Chelates, CRC Press, Boca Raton, 1991, p. 15.Google Scholar
  3. 3.
    G. Winkelmann, Biometals 2002: 3rd Intern. Biometals Symposium, 2002, p. 691.Google Scholar
  4. 4.
    B. J. Hernlem, L. M. Vane, G. D. Sayles, Inorg. Chim. Acta, 244 (1996) 179.CrossRefGoogle Scholar
  5. 5.
    S. M. Kraemer, Geochim. Cosmochim. Acta, 63 (1999) 3003.CrossRefGoogle Scholar
  6. 6.
    U. Neubauer, Environ. Sci. Technol., 34 (2000) 2749.CrossRefGoogle Scholar
  7. 7.
    S. Kraemer, J. Xu, K. N. Raymond, G. Sposito, Environ. Sci. Technol., 36 (2002) 1287.CrossRefGoogle Scholar
  8. 8.
    A.-K. Duhme-Klair, D. C. L. De Alwis, F. A. Schultz, Inorg. Chim. Acta, 351 (2003) 150.CrossRefGoogle Scholar
  9. 9.
    A. K. Duhme, R. C. Hider, M. J. Naldrett, R. N. Pau, J. Biol. Inorg. Chem., 3 (1998) 520.CrossRefGoogle Scholar
  10. 10.
    D. L. Parker, G. Sposito, B. M. Tebo, Geochim. Cosmochim. Acta, 68 (2004) 4809.CrossRefGoogle Scholar
  11. 11.
    M. Bouby, I. Billard, J. Maccordick, J. Alloys Comp., 271–273 (1998) 206.CrossRefGoogle Scholar
  12. 12.
    M. Bouby, I. Billard, J. Maccordick, I. Rossini, Radiochim. Acta, 80 (1998) 95.Google Scholar
  13. 13.
    M. Bouby, I. Billard, J. Maccordick, Czechoslovak J. Phys., 49 (1999) 147.CrossRefGoogle Scholar
  14. 14.
    M. Neu, J. Matonic, C. Ruggiero, B. Scott, Angew. Chemie Intern. Ed., 39 (2000) 1442.CrossRefGoogle Scholar
  15. 15.
    C. E. Ruggiero, J. H. Matonic, S. D. Reilly, M. P. Neu, Inorg. Chem., 41 (2002) 3593.CrossRefGoogle Scholar
  16. 16.
    J. R. Brainard, B. A. Strietelmeier, P. H. Smith, P. J. Langston-Unkefer, M. E. Barr, R. R. Ryan, Radiochim. Acta, 58–9 (1992) 357.Google Scholar
  17. 17.
    R. Lidskog, A. Andersson, The Management of Radioactive Waste: A Description of Ten Countries, SKB, Stockholm, 2002.Google Scholar
  18. 18.
    SKBF/KBS, Final Storage of Spent Nuclear Fuel-KBS-3. Vols I–IV, Swedish Nuclear Fuel Supply Co/Division KBS, Stockholm, 1983.Google Scholar
  19. 19.
    K. Pedersen, FEMS Microbiol. Lett., 185 (2000) 9.CrossRefGoogle Scholar
  20. 20.
    K. Pedersen, Diversity and Activity of Microorganisms in Deep Igneous Rock Aquifers of the Fennoscandian Shield, John Wiley & Sons 2001, p. 97.Google Scholar
  21. 21.
    T. Stevens, FEMS Microbiol. Rev., 20 (1997) 327.CrossRefGoogle Scholar
  22. 22.
    C. R. Anderson, K. Pedersen, Geobiology, 1 (2003) 169.CrossRefGoogle Scholar
  23. 23.
    A. Johnsson, J. Arlinger, A. Ödegaard-Jensen, Y. Albinsson, K. Pedersen, Geomicrobiol. J., 23 (2006) 621.CrossRefGoogle Scholar
  24. 24.
    SKB, Deep Repository for Spent Nuclear Fuel: SR 97 — Post-Closure Safety Main Report Vol I, TR-99-06, SKB, Stockholm, 1999.Google Scholar
  25. 25.
    D. W. Shoesmith, J. Nucl. Mater., 282 (2000) 1.CrossRefGoogle Scholar
  26. 26.
    V. Oversby, Rates and Mechanisms of Radioactive Release and Retention Inside a Waste Disposal Canister: In Can Processes, European Commission, 2003.Google Scholar
  27. 27.
    SKB, Deep Repository for Spent Nuclear Fuel: SR 97 — Post-Closure Safety Main Report Vol II, TR-99-06, Swedish Nuclear Fuel and Waste Management Company, Stockholm, 1999.Google Scholar
  28. 28.
    D. R. Rosenberg, P. A. Maurice, Geochim. Cosmochim. Acta, 67 (2003) 223.CrossRefGoogle Scholar
  29. 29.
    S. Cheah, S. Kraemer, J. Cervini-Silvaa, A. Sposito, Chem. Geol., 198 (2003) 63.CrossRefGoogle Scholar
  30. 30.
    B. E. Kalinowski, L. J. Libermann, Geochim. Cosmochim. Acta, 64 (2000) 1331.CrossRefGoogle Scholar
  31. 31.
    O. W. Duckworth, G. Sposito, Environ. Sci. Technol., 39 (2005) 6045.CrossRefGoogle Scholar
  32. 32.
    V. Oversby, Uranium Dioxide, SIMFUEL, and Spent Fuel Dissolution Rates — A Review of Published Data, TR-99-22, SKB, Stockholm, 1999.Google Scholar
  33. 33.
    J. Bruno, D. Arcos, L. Duro, Processes and Features Affecting the Near Field Hydrochemistry: Groundwater-Bentonite Interaction, TR-99-29, SKB, Stockholm, 1999.Google Scholar
  34. 34.
    SKB, Dissolution Rates of Unirradiated UO2, UO2 Doped with 233U, and Spent Fuel Under Normal Atmospheric Conditions and Under Reducing Conditions Using an Isotope Dilution Method, TR-03-13, SKB, Stockholm, 2003.Google Scholar
  35. 35.
    J. Meyer, A. Stintzi, V. Coulanges, S. Shivaji, J. A. Voss, K. Taraz, D. Budzikiewicz, Microbiology, 144 (1998) 3119.CrossRefGoogle Scholar
  36. 36.
    S. Payne, Methods Enzymol., 235 (1994) 329.CrossRefGoogle Scholar
  37. 37.
    B. Schwyn, J. Neilands, Anal. Biochem., 160 (1987) 47.CrossRefGoogle Scholar
  38. 38.
    S. Butorin, K. Ollila, Y. Albinsson, J. Nordgren, L. Werme, Reduction of Uranyl Carbonate and Hydroxyl Complexes and Neptunyl Carbonate Complexes Studied with Chemical-Electrochemical Methods and RIXS Spectroscopy, TR-03-15, SKB, Stockholm, 2003.Google Scholar
  39. 39.
    R. Smart, A. Rance, Effect of Radiation on Anaerobic Corrosion of Iron, TR-05-05, SKB, Stockholm, 2005.Google Scholar
  40. 40.
    L. Hersman, T. Lloyd, G. Sposito, Geochim. Cosmochim. Acta, 59 (1995) 3327.CrossRefGoogle Scholar
  41. 41.
    B. Kalinowski, A. Oskarsson, Y. Albinsson, J. Arlinger, A. Ödegaard-Jensen, T. Andlid, K. Pedersen, Geoderma, 122 (2004) 177.CrossRefGoogle Scholar
  42. 42.
    S. Frazier, R. Kretzschmar, S. Kraemer, Environ. Sci. Technol., 39 (2005) 5709.CrossRefGoogle Scholar
  43. 43.
    H. Kleykamp, J. Nucl. Mater., 131 (1985) 221.CrossRefGoogle Scholar
  44. 44.
    D. Shriver, P. Atkins, Inorganic Chemistry, Oxford University Press, Oxford, 1999.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • A. Johnsson
    • 1
    Email author
  • A. Ödegaard-Jensen
    • 2
  • G. Skarnemark
    • 2
  • K. Pedersen
    • 1
  1. 1.Department of Cell and Molecular Biology, MicrobiologyGöteborg UniversityGöteborgSweden
  2. 2.Department of Chemical and Biological Engineering, Nuclear ChemistryChalmers University of TechnologyGöteborgSweden

Personalised recommendations