Advertisement

Use of electrodeposition for sample preparation and rejection rate prediction for assay of electroformed ultra high purity copper for 232Th and 238U prior to inductively coupled plasma mass spectrometry (ICP/MS)

  • E. W. Hoppe
  • C. E. Aalseth
  • R. Brodzinski
  • A. R. Day
  • O. T. Farmer
  • T. W. Hossbach
  • J. I. McIntyre
  • H. S. Miley
  • E. E. Mintzer
  • A. Seifert
  • J. E. Smart
  • G. A. Warren
Radiotracers in Chemical-Technological Research

Abstract

The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1 μBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, however, this assay is hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS. Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.

Keywords

Uranium Thorium Rejection Rate Uranium Concentration Copper Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Brodzinski, H. S. Miley, J. H. Reeves, F. T. Avignone, J. Radioanal. Nucl. Chem., 193 (1995) 61.CrossRefGoogle Scholar
  2. 2.
    C. E. Aalseth, R. L. Brodzinski, O. T. Farmer III, E. W. Hoppe, T. W. Hossbach, H. S. Miley, AIP Conf. Proc., 2005, p. 785.Google Scholar
  3. 3.
    S. E. Glover, H. Qu, S. P. Lamont, C. Grimm, R. H. Filby, J. Radioanal. Nucl. Chem., 248 (2001) 29.CrossRefGoogle Scholar
  4. 4.
    R. L. Brodzinski, H. S. Miley, J. H. Reeves, F. T. Avignone, Nucl. Instr. Meth. Phys. Res., A292 (1990) 337.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • E. W. Hoppe
    • 1
  • C. E. Aalseth
    • 1
  • R. Brodzinski
    • 1
  • A. R. Day
    • 1
  • O. T. Farmer
    • 1
  • T. W. Hossbach
    • 1
  • J. I. McIntyre
    • 1
  • H. S. Miley
    • 1
  • E. E. Mintzer
    • 1
  • A. Seifert
    • 1
  • J. E. Smart
    • 1
  • G. A. Warren
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations