Complexation of uranium(VI) with acetohydroxamic acid

Application of Nuclear Techniques to Nuclear Waste Management

Abstract

The advanced separation extraction process based on tri-n-butyl phosphate organic phase called UREX is being developed to separate uranium from fission products and other actinides, and the acetohydroxamic acid (AHA) is employed to reduce and complex plutonium and neptunium in order to decrease their distribution to the TBP-organic phase. In this study, the extraction of uranium was performed from various aqueous matrices with different concentrations of HNO3, LiNO3, and AHA. Extraction of uranium increases with increasing both initial HNO3 and total nitrate concentration. UV-VIS spectrophotometry confirmed that AHA is involved in the complex of uranium with TBP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Taylor, I. May, I. S. Denniss, A. L. Wallwork, G. Hunt, S. Hutchison, V. Richards, N. J. Hill, Proc. RECOD 98, European Nuclear Society, Nice, 1998, p. 417.Google Scholar
  2. 2.
    A. Barocas, F. Baroncelli, G. B. Biondi, G. Grossi, J. Inorg. Nucl. Chem., 28 (1966) 2961.CrossRefGoogle Scholar
  3. 3.
    F. Baroncelli, G. Grossi, J. Inorg. Nucl. Chem., 27 (1965) 1085.CrossRefGoogle Scholar
  4. 4.
    I. May, R. J. Taylor, I. S. Dennis, G. Brown, A. L. Wallwork, N. J. Hill, J. M. Rawson, R. Less, J. Alloys Comp., 275–277 (1998) 769.CrossRefGoogle Scholar
  5. 5.
    C. E. Meloan, P. Holkeboer, W. W. Brandt, Anal. Chem., 32 (1960) 791.CrossRefGoogle Scholar
  6. 6.
    Y. Koide, M. Uchino, H. Shosenji, K. Yamada, Bull. Chem. Soc. Japan, 62 (1989) 3714.CrossRefGoogle Scholar
  7. 7.
    A. E. Martell, R. M. Smith, Critically Selected Stability Constants of Metal Complexes, National Institute of Standards and Technology, Standard Reference Database 46 Version 6.0, 2001.Google Scholar
  8. 8.
    R. J. Taylor, I. S. Dennis, I. May, Hydroxamic Acids — Novel Agents for Advanced Purex Process, Atalante 2000, Avignon (France), 2000, p. 2.Google Scholar
  9. 9.
    G. Karraker, T. S. Rudisill, M. C. Thompson, Studies of the Effect of Acetohydroxamic Acid on Distribution of Plutonium and Neptunium by 30 Vol % Tributyl Phosphate, Westinghouse Savannah River Company, WSRC-TR-2001-00509, 2001.Google Scholar
  10. 10.
    G. F. Vandegrift, M. C. Regalbuto, S. Aase, A. Bakel, T. J. Battisti, D. Bowers, J. P. Byrnes, M. A. Clark, J. W. Emery, J. R. Falkenberg, A. V. Gelis, C. Pereira, L. Hafenrichter, Y. Tsai, K. J. Quigley, M. H. Vander Pol, Designing and Demonstration of the UREX+ Process Using Spent Nuclear Fuel, Atalante 2004, Nimes (France), 2004, O12-01.Google Scholar
  11. 11.
    L. K. Kaprova, F. M. Shemiakin, Farmatsiia, 22 (1973) 76.Google Scholar
  12. 12.
    D. J. Chaiko, G. F. Vandegrift, Nucl. Technol., 82 (1988) 52.Google Scholar
  13. 13.
    W. W. Schulz, J. D. Navratil, E. Talbot (Eds), Science and Technology of Tributyl Phosphate, IIA, CRC Press, Inc., Boca Raton, Florida, USA, 2000, p. 1.Google Scholar
  14. 14.
    J. Stas, A. Dahdouh, H. Shlewit, Periodica Polytechnica Ser. Chem. Eng., 49 (2005) 3.Google Scholar
  15. 15.
    P. Tkac, A. Paulenova, to be published.Google Scholar
  16. 16.
    N. C. Schroeder, M. Attrep Jr., T. Marrero, Technetium and Iodine Separations in the UREX Process, Los Alamos National Laboratory (C-INC), Final Report for WBS 1.24.01.01, 2001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Radiation CenterOregon State UniversityCorvallisUSA
  2. 2.Department of ChemistryOregon State UniversityCorvallisUSA
  3. 3.Department of Nuclear EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations