Advertisement

Methods and software for predicting germanium detector absolute full-energy peak efficiencies

  • K. R. Jackman
  • S. R. Biegalski
Review

Abstract

High-purity germanium (HPGe) and lithium drifted germanium (Ge(Li)) detectors have been the detector of choice for high resolution gamma-ray spectroscopy for many years. This is primarily due to the superior energy resolution that germanium detectors present over other gamma-ray detectors. In order to perform quantitative analyses with germanium detectors, such as activity determination or nuclide identification, one must know the absolute full-energy peak efficiency at the desired gamma-ray energy. Many different methods and computer codes have been developed throughout history in an effort to predict these efficiencies using minimal or no experimental observations. A review of these methods and the computer codes that utilize them is presented.

Keywords

Germanium Detector Efficiency Curve Monte Carlo Code Radiation Isotope Monte Carlo Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. F. Knoll, Radiation Detection and Measurement, 3rd ed., John Wiley & Sons, New Jersey, 2000, p. 405.Google Scholar
  2. 2.
    F. S. Goulding, Nucl. Instr. Meth., 43 (1966) 1.CrossRefGoogle Scholar
  3. 3.
    J. W. Mayer, Nucl. Instr. Meth., 43 (1966) 55.CrossRefGoogle Scholar
  4. 4.
    J. M. Hollander, Nucl. Instr. Meth., 43 (1966) 65.CrossRefGoogle Scholar
  5. 5.
    B. Kahn, W. S. Lyon, Nucleonics, 11 (1953) 61.Google Scholar
  6. 6.
    R. L. Heath, USAEC Report IDO-16408, 1957.Google Scholar
  7. 7.
    S. H. Vegors, L. L. Marsden, R. L. Heath, USAEC Report IDO-16370, 1958.Google Scholar
  8. 8.
    C. C. Grosjean, Nucl. Instr. Meth., 17 (1962) 289.CrossRefGoogle Scholar
  9. 9.
    R. L. Heath, USAEC Report IDO-16880, 1964.Google Scholar
  10. 10.
    L. Ya. Graudynya, Yu. R. H. Kalnyn, L. L. Pelekis, J. Radioanal. Chem., 9 (1971) 341.CrossRefGoogle Scholar
  11. 11.
    S. N. Kaplanis, Intern. J. Appl. Radiation Isotopes, 29 (1978) 543.CrossRefGoogle Scholar
  12. 12.
    H. P. Hotz, J. M. Mathiesen, J. P. Hurley, Nucl. Instr. Meth., 37 (1965) 93.CrossRefGoogle Scholar
  13. 13.
    D. C. Camp, A. L. Van Lehn, Nucl. Instr. Meth., 76 (1969) 192.CrossRefGoogle Scholar
  14. 14.
    R. Griffiths, Nucl. Instr. Meth., 91 (1971) 377.CrossRefGoogle Scholar
  15. 15.
    K. M. Wainio, G. F. Knoll, Nucl. Instr. Meth., 44 (1966) 213.CrossRefGoogle Scholar
  16. 16.
    G. T. Ewan, A. J. Tavendale, Can. J. Phys., 42 (1964) 2286.Google Scholar
  17. 17.
    J. M. Freeman, J. G. Jenkin, Nucl. Instr. Meth., 43 (1966) 269.Google Scholar
  18. 18.
    D. F. Crisler, J. J. Jarmer, H. B. Eldridge, Nucl. Instr. Meth., 94 (1971) 285.CrossRefGoogle Scholar
  19. 19.
    R. Gunnink, J. B. Niday, USAEC Report UCRL-51061 (1972).Google Scholar
  20. 20.
    J. E. Cline, Computers in Activation Analysis and Gamma-ray Spectroscopy, Proc. ANS Topical Conf., Mayaguez, Puerto Rico, 1978, p. 185.Google Scholar
  21. 21.
    A. Notea, Nucl. Instr. Meth., 91 (1971) 513.Google Scholar
  22. 22.
    H. Baba, A. Yokoyama, Y. Sakuraba, N. Nitani, T. Saito, S. Baba, Nucl. Instr. Meth. Phys. Res., A309 (1991) 236.Google Scholar
  23. 23.
    H. Yucel, M. Atif Cetiner, H. Demirel, Appl. Radiation Isotopes, 47 (1996) 535.CrossRefGoogle Scholar
  24. 24.
    R. Gunnink, Nucl. Instr. Meth. Phys. Res., A299 (1990) 372.Google Scholar
  25. 25.
    R. Gunnink, A. L. Prindle, J. Radioanal. Nucl. Chem., 160 (1992) 305.CrossRefGoogle Scholar
  26. 26.
    A. P. Kushelevski, Z. B. Alfassi, Nucl. Instr. Meth., 131 (1975) 93.CrossRefGoogle Scholar
  27. 27.
    M. Noguchi, K. Takeda, H. Higuchi, Intern. J. Appl. Radiation Isotopes, 32 (1981) 17.CrossRefGoogle Scholar
  28. 28.
    H. Chatani, Nucl. Instr. Meth. Phys. Res., A425 (1999) 291.Google Scholar
  29. 29.
    F. Cejnar, I. Kovar, Intern. J. Appl. Radiation Isotopes, 31 (1980) 79.CrossRefGoogle Scholar
  30. 30.
    L. Moens, J. De Donder, L. Xilei, F. De Corte, A. De Wispelaere, A. Simonits, J. Hoste, Nucl. Instr. Meth., 187 (1981) 451.CrossRefGoogle Scholar
  31. 31.
    L. Moens, J. Hoste, Intern. J. Appl. Radiation Isotopes, 34 (1983) 1085.CrossRefGoogle Scholar
  32. 32.
    F. Ugletveit, H. Aaltonen, K. Sinkko, Regional Congress of the International Radiation Protection Association (IRPA) on the Radioecology of Natural and Artificial Radionuclides, Visby, Sweden, 1989, p. 474.Google Scholar
  33. 33.
    S. Jovanovic, A. Dlabac, N. Mihaljevic, P. Vukotic, J. Radioanal. Nucl. Chem., 218 (1997) 13.CrossRefGoogle Scholar
  34. 34.
    P. Vukotic, N. Mihaljevic, S. Jovanovic, S. Dapcevic, F. Boreli, J. Radioanal. Nucl. Chem., 218 (1997) 21.CrossRefGoogle Scholar
  35. 35.
    F. Piton, M. C. Lepy, M. M. Be, J. Plagnard, Appl. Radiation Isotopes, 52 (2000) 791.CrossRefGoogle Scholar
  36. 36.
    K. R. Jackman, PhD Dissertation, The University of Texas at Austin, 2007.Google Scholar
  37. 37.
    S. H. Jiang, J. H. Jiang, J. T. Chou, U. T. Lin, W. W. Yeh, Nucl. Instr. Meth. Phys. Res. A, 413 (1998) 281.CrossRefGoogle Scholar
  38. 38.
    T. Vidmar, Nucl. Instr. Meth. Phys. Res., A550 (2005) 603.Google Scholar
  39. 39.
    M. C. Lepy, T. Altzitzoglou, D. Arnold, F. Bronson, R. C. Noy, M. Decombaz, F. De Corte, R. Edelmaier, E. H. Peraza, S. Klemola, M. Korun, M. Kralik, H. Neder, J. Plagnard, S. Pomme, J. De Sanoit, O. Sima, F. Ugletveit, L. Van Velzen, T. Vidmar, Appl. Radiation Isotopes, 55 (2001) 493.CrossRefGoogle Scholar
  40. 40.
    K. R. Jackman, Master’s Thesis, The University of Texas at Austin, 2004.Google Scholar
  41. 41.
    S. Hurtado, M. Garcia-Leon, R. Garcia-Tenorio, Nucl. Instr. Meth. Phys. Res., A518 (2004) 764.Google Scholar
  42. 42.
    I. O. B. Ewa, D. Bodizs, Sz. Czifrus, Zs. Molnar, Appl. Radiation Isotopes, 55 (2001) 103.CrossRefGoogle Scholar
  43. 43.
    J. Rodenas, A. Pascual, I. Zarza, V. Serradell, J. Ortiz, L. Ballesteros, Nucl. Instr. Meth. Phys. Res., A496 (2003) 390.Google Scholar
  44. 44.
    D. Karamanis, V. Lacoste, S. Andriamonje, G. Barreau, M. Petit, Nucl. Instr. Meth. Phys. Res., A487 (2002) 477.Google Scholar
  45. 45.
    M. J. Vargas, A. F. Timon, N. C. Diaz, D. P. Sanchez, J. Radioanal. Nucl. Chem., 253 (2002) 439.CrossRefGoogle Scholar
  46. 46.
    R. M. Kippen, New Astron. Rev., 48 (2004) 221.CrossRefGoogle Scholar
  47. 47.
    O. Sima, D. Arnold, C. Dovlete, J. Radioanal. Nucl. Chem., 248 (2001) 359.CrossRefGoogle Scholar
  48. 48.
    K. Debertin, B. Grosswendt, Nucl. Instr. Meth., 203 (1982) 343.CrossRefGoogle Scholar
  49. 49.
    J. M. Laborie, G. Le Petit, D. Abt, M. Girard, Appl. Radiation Isotopes, 53 (2000) 57.CrossRefGoogle Scholar
  50. 50.
    N. C. Diaz, D. P. Sanchez, IV Congreso Regional IRPA sobre Seguridad Radiologica y Nuclear, Habana, Cuba, 1998, p. 99.Google Scholar
  51. 51.
    M. J. Vargas, N. C. Diaz, D. P. Sanchez, Appl. Radiation Isotopes, 58 (2003) 707.CrossRefGoogle Scholar
  52. 52.
    M. J. Vargas, A. L. Guerra, Appl. Radiation Isotopes, 64 (2006) 1319.CrossRefGoogle Scholar
  53. 53.
    R. Venkataraman, F. Bronson, V. Atrashkevich, M. Field, B. M. Young, J. Radioanal. Nucl. Chem., 264 (2005) 213.CrossRefGoogle Scholar
  54. 54.
    D. A. W. Bossus, J. J. J. M. Swagten, P. A. M. Kleinjans, Nucl. Instr. Meth. Phys. Res., A564 (2006) 650.Google Scholar
  55. 55.
    L. Moens, F. De Corte, A. Simonits, L. Xilei, A. De Wispelaere, J. De Donder, J. Hoste, J. Radioanal. Chem., 70 (1982) 539.CrossRefGoogle Scholar
  56. 56.
    N. Mihaljevic, S. Jovanovic, F. De Corte, B. Smodis, R. Jacimovic, G. Medin, A. De Wispelaere, P. Vukotic, P. Stegnar, J. Radioanal. Nucl. Chem., 169 (1993) 209.CrossRefGoogle Scholar
  57. 57.
    H. Aaltonen, S. Klemola, F. Ugletveit, Nucl. Instr. Meth. Phys. Res., A339 (1994) 87.Google Scholar
  58. 58.
    J. Lippert, Intern. J. Appl. Radiation Isotopes, 34 (1983) 1097.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Nuclear Engineering Teaching LaboratoryThe University of Texas at Austin, R9000AustinUSA

Personalised recommendations