Journal of Radioanalytical and Nuclear Chemistry

, Volume 277, Issue 3, pp 685–691 | Cite as

Radon concentration levels in dry CO2 emanations from Harghita Băi, Romania, used for curative purposes

  • T. NédaEmail author
  • A. Szakács
  • I. Mócsy
  • C. Cosma


The aim of this work is to study the exposure due to the radon of the patients from the dry carbon dioxide baths (mofettas) from Harghita Băi, Romania. These mofettas consist of emanated gas with high carbon dioxide content, and proved curative effects. The vertical and horizontal distribution of the radon activity concentration was monitored indoor, the seasonal variation, as well as the soil radon and thoron activity concentration outdoor, in the vicinity of the bath to determine the origin of the radon and the location of the fault through which it propagates. The equilibrium factor of the baths and the effective dose received by the patients was also calculated.


Radon Concentration Thoron Soil Radon Solid State Nuclear Track Detector Equilibrium Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Vaselli, A. Minissale, F. Tassi, G. Magro, I. Seghedi, D. Ioane, A. Szakács, Chem. Geol., 182 (2002) 637.CrossRefGoogle Scholar
  2. 2.
    R. P. Chauhan, S. K. Chakaravarti, Radiat. Meas., 35 (2002) 146.CrossRefGoogle Scholar
  3. 3.
    Z. Brassai, Romanian J. of Angiol. Vasc. Surg., 22 (1999) 1 (in Romanian).Google Scholar
  4. 4.
    Z. Brassai, Természet Világa Orvostudományi Különszám, 131 (2000) 44 (in Hungarian).Google Scholar
  5. 5.
    E. Szabó, Izotóptechnika, Diagnosztika, 33 (1990) 171.Google Scholar
  6. 6.
    D. Averbeck, I. Testard, D. Boucher, Intern. J. Low Radiat., 3 (2006) 117.CrossRefGoogle Scholar
  7. 7.
    K. Kant, R. P. Chauhan, G. S. Sharma, S. K. Chakarvarti, Intern. J. Low Radiat., 1 (2003) 76.CrossRefGoogle Scholar
  8. 8.
    K. Kant, S. K. Chakarvarti, Intern. J. Low Radiat., 3 (2006) 66.Google Scholar
  9. 9.
    I. Lázár, E. Tóth, G. Marx, G. Cziegler, G. J. Köteles, J. Radioanal. Nucl. Chem., 258 (2003) 519.CrossRefGoogle Scholar
  10. 10.
    M. Pollycove, L. E. Feinendegen, C. R. Acad. Sci. III, 322 (1999) 197.Google Scholar
  11. 11.
    L. E. Feinendegen, British J. Radiol., 78 (2005) 3.CrossRefGoogle Scholar
  12. 12.
    E. I. Azzam, Radiat. Res., 138 (1994) S28.CrossRefGoogle Scholar
  13. 13.
    E. I. Azzam, S. M. de Toledo, G. P. Raaphorst, R. E. J. Mitchel, Radiat. Res., 146 (1996) 369.CrossRefGoogle Scholar
  14. 14.
    M. J. Ghiassi-Nejad, M. Karam, P. A. Skushima, T. Niromand-Rad, A. Cameron Jr., Intern. J. Low Radiat., 2 (2006) 20.CrossRefGoogle Scholar
  15. 15.
    Á. Szabó, Radioaktív ásványvizek és mofettagázok, Stúdium Könyvkiadó, Cluj-Napoca, 2005, p. 113 (in Hungarian).Google Scholar
  16. 16.
    ICRP Publication 65: Protection Against Radon-222 at Home and at Work, Annals of the ICRP, Vol 23, No. 2, 1993, p. 32.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Environmental SciencesSapientia UniversitySapientiaRomania
  2. 2.Department of Environmental SciencesBabeş-Bolyai UniversityBabeş-BolyaiRomania

Personalised recommendations