Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 277, Issue 2, pp 405–411 | Cite as

Anomalously high activities of 137Cs in soils and vegetation on and near a diabase outcrop in La Sierra de Lema, Venezuela

  • J. J. LaBrecque
  • J. A. Alfonso
  • P. R. Cordoves
Article

Abstract

As a result of routine soil sampling to determine the 137Cs background activities country-wide in Venezuela, it was decided to further investigate El Mirador (Lookout) area at the base of the Sierra de Lema mountain range. In April 2003 (A), soil samples were collected at eight sites on and around the edge of the diabase outcrop to confirm that this area had anomalously high 137Cs activities. In July 2003 (B), not only soil samples were collected again, but also black mat, palm tree leaves and trunks, fruit bushes leaves and its fruit and fern leaves. The 137Cs content was measured by high resolution gamma-ray spectroscopy by a comparative method with reference materials. The 137Cs activity values range from 16.3 to 30.8 Bq·kg-1 in the soil samples collected in July 2003, 20.7–32.1 Bq·kg−1 for the black mat, 26.3–38.4 Bq·kg−1 for the palm leaves, 16.8–31.2 Bq·kg−1 for the palm trunks and 17.6–27.3 Bq·kg−1 for the fruit bush leaves, while, the 137Cs activity values for the whole fruit were between 23.4 and 30.7 Bq·kg−1; but, the value of the 137Cs activity in the center of the fruit (the edible part) was 51.6 Bq·kg−1, and the value of the 137Cs activity for the fern leaves was 51.8 Bq·kg−1. Thus, most of the 137Cs activity values determined in the soil, black mat and vegetation samples from El Mirador (Lookout) were considered anomalously high with respect to those found near the equator and in other areas of Venezuela. Only the center of the fruit from the Clusia grandiflora bushes and the fern leaves had high activity ratios, about a factor of three and could be considered as biomonitors that concentrate and retain the 137Cs. Finally, these anomalously high 137Cs activities have been attributed not only to the rich organic soils, as sinks, but also due to the affect of the cloud forests.

Keywords

Soil Sample Bark International Atomic Energy Agency Venezuela 137Cs Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Labrecque, P. A. Rosales, O. Carias, Nucl. Instr. Meth. Phys. Res., A312 (1992) 217.Google Scholar
  2. 2.
    J. J. Labrecque, J. Radioanal. Nucl. Chem., 178 (1994) 327.CrossRefGoogle Scholar
  3. 3.
    J. J. Labrecque, J. Laine, Acta Cient. Venezolana, 46 (1995) 140.Google Scholar
  4. 4.
    J. J. Labrecque, P. A. Rosales, J. Trace Microprobe Techn., 14 (1996) 203.Google Scholar
  5. 5.
    J. J. Labrecque, P. A. Rosales, J. Radioanal. Nucl. Chem., 220 (1997) 59.CrossRefGoogle Scholar
  6. 6.
    D. Palacios, M. Castro, F. Perez; F. Urbani, L. Sajo-Bohus, J. J. Labrecque, J. Radioanal. Nucl. Chem., 241 (1998) 69.CrossRefGoogle Scholar
  7. 7.
    J. J. Labrecque, P. A. Rosales, P. R. Cordoves, J. Radioanal. Nucl. Chem., 247 (2000) 563.CrossRefGoogle Scholar
  8. 8.
    J. J. Labrecque, P. A. Rosales, P. R. Cordoves, J. Radioanal. Nucl. Chem., 253 (2002) 87.CrossRefGoogle Scholar
  9. 9.
    J. J. Labrecque, P. R. Cordoves, J. Radioanal. Nucl. Chem., 262 (2004) 375.CrossRefGoogle Scholar
  10. 10.
    J. J. Labrecque, P. R. Cordoves, J. Radioanal. Nucl. Chem., 265 (2005) 91.CrossRefGoogle Scholar
  11. 11.
    J. J. Labrecque, P. A. Rosales, The Determination of 137Cs in Venezuelan Vegetation, in: Practical Methods for Environmental Analysis, Polyscience Publications, Ottawa, Canada, 1996, p. 49.Google Scholar
  12. 12.
    P. A. Rosales, P. R. Cordoves, J. J. Labrecque, Análisis de Material Vegetal para Determinar 137Cs, in: Jornadas Venezolanas de Técnicas AnalÍticas No Convencionales para un Desarrollo Sustentable, P. L. Livinalli (Ed.), Universidad Simón Bolívar, Sede del Litoral, Venezuela, 1996, p. 260.Google Scholar
  13. 13.
    J. J. Labrecque, P. A. Rosales, P. R. Cordoves, J. Radioanal. Nucl. Chem., 231 (1998) 139.CrossRefGoogle Scholar
  14. 14.
    J. J. Labrecque, P. R. Cordoves, J. Radioanal. Nucl. Chem., 273 (2007) 401.CrossRefGoogle Scholar
  15. 15.
    M. E. Conti, G. Cecchetti, Environ. Poll., 114 (2001) 471.CrossRefGoogle Scholar
  16. 16.
    The Use of Gamma Ray Data to Define the Natural Radiation Environment, IAEA-TECDOC-566, International Atomic Energy Agency, Vienna, Austria, 1990, 48 p.Google Scholar
  17. 17.
    M. Dowdall, J. P. Gwynn, C. Moran, C. Davids, J. O’Dea, B. Lind, J. Radioanal. Nucl. Chem., 266 (2005) 217.CrossRefGoogle Scholar
  18. 18.
    A. P. Lopatkina, Geochem. Intern., 4/6 (1964) 788.Google Scholar
  19. 19.
    E. F. Idiz, D. Carlisle, I. R. Kaplan, Appl. Geochem., 1 (1986) 573.CrossRefGoogle Scholar
  20. 20.
    M. Dowdall, J. O’Dea, Radiochim. Acta, 87 (1999) 109.Google Scholar
  21. 21.
    Guia Ecologia de la Gran Sabana, O. Huber, G. Febres (Eds), Ecograph proyectos y edtiones, The Nature Conservancy, Caracas, Venezuela, 2000, 189 p.Google Scholar
  22. 22.
    L. Psyonicki, A. N. Hanna, O. Suschny, Report on International Run: Soil-6, Radionuclides in Soil, International Atomic Energy Agency, IAEA/RL/142, Vienna, Austria, 1984, 31 p.Google Scholar
  23. 23.
    V. Strachnov, V. Valkovic, R. Dekner, Report on the Intercomparison Run IAEA-156: Radionuclides in Clover, International Atomic Energy Agency, IAEA/AL/035, Vienna, Austria, 1991, 26 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • J. J. LaBrecque
    • 1
  • J. A. Alfonso
    • 1
  • P. R. Cordoves
    • 1
  1. 1.Instituto Venezolano de Investigaciones CientíficasCentro de QuímicaApartadoVenezuela

Personalised recommendations