Journal of Radioanalytical and Nuclear Chemistry

, Volume 273, Issue 2, pp 337–344 | Cite as

Determination of 226Ra in sediments by ICP-MS: A comparative study of three sample preparation approaches

  • D. Larivière
  • D. K. Brownell
  • V. N. Epov
  • R. J. Cornett
  • R. D. Evans


Three protocols (Method I: ion chromatography (IC) and extraction chromatography (EC), Method II: precipitation followed by IC, and Method III: adsorption onto MnO2 followed by IC-EC) were investigated to determine their applicability for the separation and pre-concentration of 226Ra in sediments. 226Ra recoveries, measured using the isotope dilution method with 228Ra as yield tracer, and the removal of spectral and non-spectral interferences were evaluated. The formation of polyatomic interferences at m/z = 226 from elements found in the matrix of sediments was also investigated to assess the level of separation required. Methods I and III were found to be the most effective with respect to recoveries and interference removal. The efficiency of a rapid microwave based protocol for the complete digestion of 1 g of sediment is also described. The method was tested and 226Ra concentrations in the millibecquerel range (fg) were determined in a standard reference material and sediment cores collected from Lake Baikal.


Thermal Ionization Mass Spectrometry Extraction Chromatography Isotope Dilution Method Polyatomic Interference 226Ra Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Foster, M. Staubwasser, G. M. Henderson, Mar. Chem., 87 (2004) 59.CrossRefGoogle Scholar
  2. 2.
    S. Purkl, A. Eisenhauer, Mar. Chem., 87 (2004) 137.CrossRefGoogle Scholar
  3. 3.
    M. K. Scott, S. B. Moran, J. Environ. Radioact., 54 (2001) 163.CrossRefGoogle Scholar
  4. 4.
    N. Xing, M. Chen, Y. P. Huang, P. H. Cai, Y. S. Qiu, Sci. China Ser. D-Earth Sci., 46 (2003) 516.CrossRefGoogle Scholar
  5. 5.
    G. A. Aycik, D. Cetaku, H. N. Erten, I. Salihoglu, J. Radioanal. Nucl. Chem., 259 (2004) 177.CrossRefGoogle Scholar
  6. 6.
    S. Miguel, J. P. Bolivar, R. Garcia-Tenorio, J. Paleolimnol., 29 (2003) 1.CrossRefGoogle Scholar
  7. 7.
    J. N. Smith, S. B. Moran, R. W. Macdonald, Deep-Sea Res. Part I-Oceanogr. Res. Pap., 50 (2003) 397.CrossRefGoogle Scholar
  8. 8.
    V. Liebetrau, A. Eisenhauer, N. Gussone, G. Worner, B. T. Hansen, T. Leipe, Geochim. Cosmochim. Acta, 66 (2002) 73.CrossRefGoogle Scholar
  9. 9.
    A. J. Pietruszka, R. W. Carlson, E. H. Hauri, Chem. Geol., 188 (2002) 171.CrossRefGoogle Scholar
  10. 10.
    T. Yokoyama, E. Nakamura, J. Anal. At. Spectrom., 19 (2004) 717.CrossRefGoogle Scholar
  11. 11.
    J. A. Robbins, Geochemical and Geophysical Application of Radioactive Lead in The Biogeochemistry of Lead in the Environment, J. O. Nriagu, (Ed.) Elsevier/North-Holland, New York, 1978, p. 285.Google Scholar
  12. 12.
    J. L. Aguado, J. P. Bolivar, R. Garcia-Tenorio, J. Environ. Radioact., 74 (2004) 117.CrossRefGoogle Scholar
  13. 13.
    J. G. Decaillon, M. Bickel, C. Hill, T. Altzitzoglou, Appl. Radiation Isotopes, 61 (2004) 409.CrossRefGoogle Scholar
  14. 14.
    M. Yamamoto, H. Kawamura, Y. Igarashi, K. Shiraishi, K. Ueno, Radiochim. Acta, 55 (1991) 163.Google Scholar
  15. 15.
    Z. Papp, Z. Dezso, S. Daroczy, J. Radioanal. Nucl. Chem., 222 (1997) 171.CrossRefGoogle Scholar
  16. 16.
    A. Paytan, W. S. Moore, M. Kastner, Geochim. Cosmochim. Acta, 60 (1996) 4313.CrossRefGoogle Scholar
  17. 17.
    A. H. Andrews, K. H. Coale, J. L. Nowicki, C. Lundstrom, Z. Palacz, E. J. Burton, G. M. Cailliet, Can. J. Fish. Aquat. Sci., 56 (1999) 1329.CrossRefGoogle Scholar
  18. 18.
    A. S. Cohen, R. K. Onions, Anal. Chem., 63 (1991) 2705.CrossRefGoogle Scholar
  19. 19.
    B. Ghaleb, E. Pons-Branchu, P. Deschamps, J. Anal. At. Spectrom., 19 (2004) 906.CrossRefGoogle Scholar
  20. 20.
    A. M. Volpe, J. A. Olivares, M. T. Murrell, Anal. Chem., 63 (1991) 913.CrossRefGoogle Scholar
  21. 21.
    S. Joannon, C. Pin, J. Anal. At. Spectrom., 16 (2001) 32.CrossRefGoogle Scholar
  22. 22.
    Y. J. Kim, C. K. Kim, C. S. Kim, J. Y. Yun, B. H. Rho, J. Radioanal. Nucl. Chem., 240 (1999) 613.CrossRefGoogle Scholar
  23. 23.
    C. J. Park, P. J. Oh, H. Y. Kim, D. S. Lee, J. Anal. At. Spectrom., 14 (1999) 223.CrossRefGoogle Scholar
  24. 24.
    V. N. Epov, D. Lariviere, R. D. Evans, C. Li, R. J. Cornett, J. Radioanal. Nucl. Chem., 256 (2003) 53.CrossRefGoogle Scholar
  25. 25.
    D. Lariviere, V. N. Epov, R. D. Evans, R. J. Cornett, J. Anal. At. Spectrom., 18 (2003) 338.CrossRefGoogle Scholar
  26. 26.
    R. S. McIntyre, D. C. Gregoire, C. L. Chakrabarti, J. Anal. At. Spectrom., 12 (1997) 547.CrossRefGoogle Scholar
  27. 27.
    J. S. Alvarado, M. D. Erickson, J. Anal. At. Spectrom., 11 (1996) 923.CrossRefGoogle Scholar
  28. 28.
    K. Benkhedda, D. Lariviere, S. Scott, D. Evans, J. Anal. At. Spectrom., 20 (2005) 523.CrossRefGoogle Scholar
  29. 29.
    M. V. Zoriy, Z. Varga, C. Pickhardt, P. Ostapczuk, R. Hille, L. Halicz, I. Segal, J. S. Becker, J. Environ. Monit., 7 (2005) 514.CrossRefGoogle Scholar
  30. 30.
    F. Chabaux, D. B. Othman, J. L. Birck, Chem. Geol., 114 (1994) 191.CrossRefGoogle Scholar
  31. 31.
    D. Lariviere, V. N. Epov, K. M. Reiber, R. J. Cornett, R. D. Evans, Anal. Chim. Acta, 528 (2005) 175.CrossRefGoogle Scholar
  32. 32.
    L. L. Petrov, Y. N. Kornakov, L. A. Persikova, E. A. Anchutina, Intern. J. Environ. Anal. Chem., 74 (1999) 275.Google Scholar
  33. 33.
    D. Wiederin, Initial Investigation of the New Apex Sample Inlet System for Finnigan MC-ICP-MS, Elemental Scientific,, last accessed 10/05/2006.
  34. 34.
    V. F. Hodge, G. A. Laing, Radiochim. Acta, 64 (1994) 211.Google Scholar
  35. 35.
    H. Higuchi, M. Uesugi, K. Sato, N. Ohashi, M. Noguchi, Anal. Chem., 56 (1984) 761.CrossRefGoogle Scholar
  36. 36.
    Y. Miyake, Y. Sigimura, Stud. Oceanogr., 1 (1964) 274.Google Scholar
  37. 37.
    Y. Sugimura, H. Tsubota, J. Mar. Res., 21 (1963) 74.Google Scholar
  38. 38.
    B. Parsa, R. N. Obed, W. K. Nemeth, G. Suozzo, Health Phys., 86 (2004) 145.CrossRefGoogle Scholar
  39. 39.
    L. Zikovsky, J. Radioanal. Nucl. Chem., 251 (2002) 329.CrossRefGoogle Scholar
  40. 40.
    Q. J. Chen, X. L. Hou, Y. X. Yu, H. Dahlgaard, S. P. Nielsen, Anal. Chim. Acta, 466 (2002) 109.CrossRefGoogle Scholar
  41. 41.
    D. S. Moon, W. C. Burnett, S. Nour, P. Horwitz, A. Bond, Appl. Radiation Isotopes, 59 (2003) 255.CrossRefGoogle Scholar
  42. 42.
    L. Maggi, V. C. Crespi, M. T. Valentini Ganzerli, Analyst, 126 (2001) 399.CrossRefGoogle Scholar
  43. 43.
    J. Boyle, A. Mackay, N. Rose, P. Appleby, J. Paleolimnol., 20 (1998) 135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • D. Larivière
    • 1
  • D. K. Brownell
    • 1
  • V. N. Epov
    • 1
  • R. J. Cornett
    • 1
    • 2
  • R. D. Evans
    • 1
  1. 1.Environmental and Resources StudiesTrent UniversityPeterboroughCanada
  2. 2.Radiation Protection BureauOttawaCanada

Personalised recommendations