Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Experimental and theoretical evaluation of mechanical, thermal and morphological features of EVA-millable polyurethane blends

  • 30 Accesses

Abstract

Heterogeneous blends of millable polyurethane (MPU) and ethylene-co-vinyl acetate (EVA) elastomers have been prepared by conventional open mill mixing, and subsequently cured with DCP as curing agent. The prepared blends were characterized by TGA, DSC, XRD and DMA techniques. Mechanical and solvent transport features have been evaluated. Examination of EVA phase crystallization dynamics revealed that the 50:50 blend possessed a higher energy barrier during crystallization. When EVA became the minor or major phase, the system offers similar energy barrier features. Solvent transport mechanism has been found to shift towards non-Fickian for blends with EVA as the major phase. Mechanical properties have been found to be complementary to the observed crystalline features of the blends. A blend with EVA to MPU ratio 80:20 is highlighted as a soft and strong material, with enhanced solvent resistance features suitable as a matrix for different engineering applications.

Development of MPU/EVA blends

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Mantia LFP, Morreale M, Botta L et al (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab 145:79–92. https://doi.org/10.1016/j.polymdegradstab.2017.07.011

  2. 2.

    Botta L, Mistretta MC, Palermo S, Fragalà M, Pappalardo F (2015) Characterization and Processability of blends of Polylactide acid with a new biodegradable medium-chain-length Polyhydroxyalkanoate. J Polym Environ 23:478–486. https://doi.org/10.1007/s10924-015-0729-4

  3. 3.

    Goonoo N, Bhaw-luximon A, Jhurry D (2015) Biodegradable polymer blends : miscibility , physicochemical properties and biological response of scaffolds. Polym Int 64. https://doi.org/10.1002/pi.4937

  4. 4.

    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002

  5. 5.

    Rajan KP, Al-ghamdi A, Ramesh P, Nando GB (2012) Blends of thermoplastic polyurethane ( TPU ) and polydimethyl siloxane rubber ( PDMS ), part-I : assessment of compatibility from torque rheometry and mechanical properties. J Polym Res 19:9872–9813. https://doi.org/10.1007/s10965-012-9872-y

  6. 6.

    Barlow J, Paul DR (1981) Polymer blends and alloys - a review of selected considerations. Polym Eng Sci 21:985–996. https://doi.org/10.1002/pen.760211502

  7. 7.

    Kunchimon SZ, Tausif M, Goswami P, Cheung V (2019) Polyamide 6 and thermoplastic polyurethane recycled hybrid Fibres via twin-screw melt extrusion. J Polym Res 26:162–114. https://doi.org/10.1007/s10965-019-1827-0

  8. 8.

    Prasad K (2018) Permeability control in polymeric systems : a review. J Polym Res 25:232–220. https://doi.org/10.1007/s10965-018-1636-x

  9. 9.

    Jia S, Zhu Y, Wang Z, Chen L, Fu L (2015) Influences of PP-g-MA on the surface free energy, morphologies and mechanical properties of thermoplastic polyurethane / polypropylene blends. J Polym Res 22:159–110. https://doi.org/10.1007/s10965-015-0800-9

  10. 10.

    Matsui M, Munaro M (2011) Chitin- polyurethane networks : correlations between physical properties and composition. J Polym Res 18:2255–2264. https://doi.org/10.1007/s10965-011-9639-x

  11. 11.

    Mohamad Z, Ismail H, Thevy RC (2006) Characterization of Epoxidized natural rubber / ethylene vinyl acetate ( ENR-50 / EVA ) blend : effect of blend ratio. J Appl Polym Sci 99:1504–1515. https://doi.org/10.1002/app.22154

  12. 12.

    Wang J, Guo J, Li C, Yang S, Wu H, Guo S (2014) Crystallization kinetics behavior, molecular interaction, and impact-induced morphological evolution of polypropylene/poly(ethylene-co-octene) blends: insight into toughening mechanism. J Polym Res 21:618–613. https://doi.org/10.1007/s10965-014-0618-x

  13. 13.

    Dasmahapatra AK (2016) Phase separation and crystallization in double crystalline symmetric binary polymer blends. J Polym Res 23:56–13. https://doi.org/10.1007/s10965-016-0950-4

  14. 14.

    Maiti SN (2012) Nonisothermal crystallization kinetics of PA6 and PA6 / SEBS- g-MA blends. J Polym Res 19:9926–9916. https://doi.org/10.1007/s10965-012-9926-1

  15. 15.

    Khonakdar HA, Wagenknecht U, Jafari SH et al (2004) Dynamic mechanical properties and morphology of polyethylene / ethylene vinyl acetate copolymer blends. Adv Polym Technol 23:307–315. https://doi.org/10.1002/adv.20019

  16. 16.

    Zhang Z, Yu F, Yu W, Zhang H (2015) Non-isothermal crystallization behavior of dynamically vulcanized long chain branched polypropylene / ethylene-propylene-diene monomer blends. J Polym Res 22:198–116. https://doi.org/10.1007/s10965-015-0845-9

  17. 17.

    Dutta J, Naskar K (2014) Investigation on morphology, mechanical, dynamic mechanical and thermal behaviour of blends based on ethylene vinyl acetate (EVA) and thermoplastic polyurethane (TPU). RSC Adv 4:60831–60841. https://doi.org/10.1039/c4ra07823c

  18. 18.

    John B, Thomas SP, Varughese KT, Oommen Z, Thomas S (2011) The effects of blend ratio, compatibilization and dynamic vulcanization on permeation of gases through HDPE/EVA blends. Jouornal Polym Res 18:1101–1109. https://doi.org/10.1007/s10965-010-9512-3

  19. 19.

    Maiti M, Jasra RV, Kusum SK, Chaki TK (2012) Microcellular foam from ethylene vinyl acetate / Polybutadiene rubber ( EVA / BR ) based thermoplastic elastomers for footwear applications. Ind Eng Chem Res 51:10607–10612. https://doi.org/10.1021/ie300396m

  20. 20.

    Sujith A, Unnikrishnan G (2006) Molecular sorption by heterogeneous natural rubber / poly ( ethylene- co -vinyl acetate ) blend systems. J Polym Res 13:171–180. https://doi.org/10.1007/s10965-005-9021-y

  21. 21.

    Ganesh B, Unnikrishnan G (2005) Cure characteristics , morphology , mechanical properties , and aging characteristics of silicone rubber / ethylene vinyl acetate blends. J Appl Polym Sci 99:1069–1082. https://doi.org/10.1002/app.22621

  22. 22.

    Li Y, Shimizu H (2007) Toughening of Polylactide by melt blending with a biodegradable poly ( ether ) urethane elastomer. Macromol Biosci 7:921–928. https://doi.org/10.1002/mabi.200700027

  23. 23.

    Wu WB, Hsieh KH, Chiu WY (1994) Effect of polyurethane structure on Mechani- cal properties of Nylon-66 / polyurethane blends. J Polym Res 1:337–344. https://doi.org/10.1007/BF01378766

  24. 24.

    Im HG, Ka KR, Kim CK (2010) Characteristics of polyurethane elastomer blends with poly ( acrylonitrile- co -butadiene ) rubber as an Encapsulant for underwater sonar devices. Ind Eng Chem Res:7336–7342. https://doi.org/10.1021/ie100975n

  25. 25.

    Chowdhury SR, Das CK (2000) Shrinkability of ethylene vinyl acetate / polyurethane blends and their characterization. Polym Adv Technol 367:359–367. https://doi.org/10.1002/1099-1581(200007)11:7<359::AID-PAT980>3.0.CO;2-K

  26. 26.

    Zaragoza MV, Vargas ER, Rodriguez FJM, Martinez BMH (2006) Thermal stability and flammability properties of heterophasic PP-EP / EVA / organoclay nanocomposites. Polym Degrad Stab 91:1319–1325. https://doi.org/10.1016/j.polymdegradstab.2005.08.011

  27. 27.

    Moly KA, Bhagawan SS, George SC, Thomas S (2007) Sorption and diffusion of aromatic solvents through linear low density polyethylene – ethylene vinyl acetate blend membranes. J Mater Sci 42:4552–4561. https://doi.org/10.1007/s10853-006-0544-3

  28. 28.

    Ma J, Shao L, Xue C, Deng F, Duan Z (2014) Compatibilization and properties of ethylene vinyl acetate copolymer (EVA) and thermoplastic polyurethane (TPU) blend based foam. Polym Bull 71:2219–2234. https://doi.org/10.1007/s00289-014-1183-5

  29. 29.

    Sheng H, Zhang Y, Wang B et al (2019) Effect of radiation beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hotwater aging test. Radiat Phys Chem 133:1–8. https://doi.org/10.1016/j.radphyschem.2016.11.018

  30. 30.

    Sabet M, Soleimani H, Hosseini S (2015) Properties and characterization of ethylene-vinyl acetate filled with carbon nanotube. Polym Bull 73:419–434. https://doi.org/10.1007/s00289-015-1499-9

  31. 31.

    Shamekhi MA, Khonakdar HA, Jafari SH et al (2014) Electron beam cross-linking of EVA / TPU blends. Plast Rubber Compos 43:202–210. https://doi.org/10.1179/1743289814Y.0000000086

  32. 32.

    Dutta J, Chatterjee T, Dara G, Naskar K (2015) Exploring the influence of electron beam irradiation on the morphology, physico- mechanical, thermal behaviour and performance properties of EVA and TPU blends. RSC Adv 5:41563–41575. https://doi.org/10.1039/c5ra03381k

  33. 33.

    Chattopadhyay S, Chaki TK, Bhowmick AK (2001) Structural characterization of Electron-beam Crosslinked thermoplastic elastomeric films from blends of polyethylene and ethylene-vinyl acetate copolymers. J Appl Polym Sci 81:1936–1950

  34. 34.

    Zhang N, Lu X (2016) Morphology and properties of super-toughened bio-based poly ( lactic acid )/ poly ( ethylene- co -vinyl acetate ) blends by peroxide-induced dynamic vulcanization and interfacial compatibilization. Polym Test 56:354–363. https://doi.org/10.1016/j.polymertesting.2016.11.003

  35. 35.

    Riva A, Zanetti M, Braglia M et al (2002) Thermal degradation and rheological behaviour of EVA / montmorillonite nanocomposites. Polym Degrad Stab 77:299–304. https://doi.org/10.1016/S0141-3910(02)00065-4

  36. 36.

    Lei W, Fang C, Zhou X et al (2017) Thermochimica Acta morphology and thermal properties of polyurethane elastomer based on representative structural chain extenders. Thermochim Acta 653:116–125. https://doi.org/10.1016/j.tca.2017.04.008

  37. 37.

    Mohamed MG, Tu J, Huang S et al (2016) Hydrogen bonding interactions affect thehierarchical self-assembly and secondary supramolecular complexes displaying photoresponsive behavior. RSC Adv 6:51456–51469. https://doi.org/10.1039/c6ra07907e

  38. 38.

    Mohamed MG, Lu F, Hong J, Kuo S (2015) Strong emission of 2,4,6-triphenylpyridine- functionalized polytyrosine and hydrogen- bonding interactions with poly(4-vinylpyridine). Polym Chem 6:6340–6350. https://doi.org/10.1039/c5py00938c

  39. 39.

    Dikobe DG, Luyt AS (2010) Morphology and thermal properties of maleic anhydride grafted polypropylene / ethylene – vinyl acetate copolymer / wood powder blend composites. J Appl Polym Sci 116:3193–3201. https://doi.org/10.1002/app.31630

  40. 40.

    Zhang R, He X (2015) Crystallization and molecular dynamics of ethylene-vinyl acetate copolymer/butyl rubber blends. RSC Adv 5:130–135. https://doi.org/10.1039/c4ra10568k

  41. 41.

    Wang J, Chen Y, Chen R (2007) Preparation of thermosetting polyurethane Nanocomposites by Montmorillonite modified with a novel intercalation agent. J Polym Sci Part B Polym Phys 45:519–531. https://doi.org/10.1002/polb.21029

  42. 42.

    Lin TA, Lou C, Lin J (2017) The effects of thermoplastic polyurethane on the structure and mechanical properties of modified polypropylene blends. Appl Sci 7:1245. https://doi.org/10.3390/app7121254

  43. 43.

    Ghobashy MM, Abdeen ZI (2016) Radiation crosslinking of polyurethanes : characterization by FTIR , TGA , SEM , XRD , and raman spectroscopy. J Polym 2016:1–9. https://doi.org/10.1155/2016/9802514

  44. 44.

    Varghse H, Bhagawan SS, Rao S, Thomas S (1995) Morphology, mechanical and viscoelastic behaviour of blends of nitrile rubber and ethylene-vinyl acetate copolymer. Eur Polym J 31:957–967. https://doi.org/10.1016/0014-3057(95)00056-9

  45. 45.

    Kannan M, Joseph K, Thomas S (2015) Dynamic mechanical properties of nanoclay filled TPU / PP blends with compatibiliser. Plast Rubber Compos 44:245–251. https://doi.org/10.1179/1743289815Y.0000000019

  46. 46.

    Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane / montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86:549–555. https://doi.org/10.1016/j.polymdegradstab.2004.07.001

  47. 47.

    Turri S, Valsecchi R, Levi M et al (2008) Microstructure to property relations in a family of millable polyurethane fluoroelastomers. Eur Polym J 44:2951–2961. https://doi.org/10.1016/j.eurpolymj.2008.06.026

  48. 48.

    Rafiee F, Otadi M, Goodarzi V et al (2016) Thermal and dynamic mechanical properties of PP / EVA nanocomposites containing organo-modifi ed layered double hydroxides. Compos Part B 103:122–130. https://doi.org/10.1016/j.compositesb.2016.08.013

  49. 49.

    George S, Varghese KT, Thomas S (2000) Molecular transport of aromatic solvents in isotactic polypropylene/acrylonitrile-co-butadiene rubber blends. Polymer (Guildf) 41:579–594. https://doi.org/10.1016/S0032-3861(99)00208-6

  50. 50.

    Abraham J, Muraleedharan K, Kumar CR, et al (2016) Solvent transport characteristics of thermoplastic elastomer blends based on nylon and NBR. Polym Eng Sci 1–6. https://doi.org/10.1002/pen

  51. 51.

    Veenstra H, Verkooijen PCJ, Van Lent BJJ et al (2000) On the mechanical properties of co-continuous polymer blends : experimental and modelling. Polymer (Guildf) 41:1817–1826. https://doi.org/10.1016/S0032-3861(99)00337-7

  52. 52.

    Joseph S, Thomas S (2002) Modeling of tensile moduli in polystyrene / Polybutadiene blends. J Polym Sci Part B Polym Phys 40:755–764. https://doi.org/10.1002/polb.10139

  53. 53.

    Wisniewski C, Marin G, Monge PH (1985) Viscoelastic behaviour of non-compatible polymer blends: polystyrene-polycarbonate. Eur Polym J 21:479–484. https://doi.org/10.1016/0014-3057(85)90128-4

  54. 54.

    Hameed T, Hussein IA (2004) Effect of short chain branching of LDPE on its miscibility with linear HDPE. Macromol Mater Eng 289:198–203. https://doi.org/10.1002/mame.200300173

  55. 55.

    Rasana N, Jayanarayanan K, Deeraj BDS, Joseph K (2019) The thermal degradation and dynamic mechanical properties modeling of MWCNT / glass fiber multiscale filler reinforced polypropylene composites. Compos Sci Technol 169:249–259. https://doi.org/10.1016/j.compscitech.2018.11.027

Download references

Acknowledgements

The authors gratefully acknowledge MHRD Govt. of India for providing a financial support. Thanks are due to Mr.

Diljith Department of Chemistry NIT Calicut, for support in DSC and TGA analysis, Mr. Sreenath, Polymer Science and Rubber Technology Department, CUSAT, Kerala for the help in executing DMA and Dr. Subhash S and Ms. Nubla K, School of Materials Science and Engineering, NIT Calicut for the contributions in SEM analysis.

Author information

Correspondence to G. Unnikrishnan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shafeeq, V.H., Unnikrishnan, G. Experimental and theoretical evaluation of mechanical, thermal and morphological features of EVA-millable polyurethane blends. J Polym Res 27, 53 (2020). https://doi.org/10.1007/s10965-020-2027-7

Download citation

Keywords

  • Millable polyurethane
  • Polymer blends
  • Solvent transport
  • Morphology and crystallization
  • Ethylene-co-vinyl acetate