Advertisement

Journal of Polymer Research

, 27:37 | Cite as

Effects of magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nanosilica compounds

  • Riri Murniati
  • Handika Dany Rahmayanti
  • Fisca Dian Utami
  • Adi Cifriadi
  • Ferry Iskandar
  • Mikrajuddin AbdullahEmail author
ORIGINAL PAPER

Abstract

We investigated the effect of magnetically modified natural zeolite on the mechanical and damping properties of natural rubber-nanosilica compounds. We used natural rubber SIR 20 technical specified rubber (TSR) reinforced with a nanosilica filler. The results showed that using zeolite modified with magnetite and titanate coupling agent (TCA), which are alternative coupling agents to replace silane coupling agents, and amorphous silica as the filler in natural rubber TSR SIR 20 compounds enhanced the mechanical properties of the TSR vulcanization products. The relationships among the crosslink density, mechanical properties and damping properties were also explored. We also identified that an improvement in the properties resulted from a modification of the white oil softener and filler comprising the zeolite-nanosilica-magnetic blends. The results of magnetically modified zeolite showed that the crosslink density, mechanical properties and damping properties increased significantly. The damping ratio in the sample comprising Si + Fe + Z with or without the white oil softener was higher than that of the other samples herein (ζ > 0.03). Based on this result, a reinforced nanosilica filler with magnetically modified zeolite has the potential to replace carbon black and is applicable to damping devices.

Keywords

Zeolite Crosslink density Mechanical properties Damping Nanosilica 

Notes

Acknowledgements

This work was financially supported in part by the “PDU” program in collaboration with BPKLN of the Ministry of Research and Higher Education of Republic of Indonesia, WCR Research Grant from Ministry of Research and Higher Education of Republic of Indonesia No. 1173/I.C01/PL/2019 and the Research Grant of Institut Teknologi Bandung No. 91 m/I1.C01/PL/2019.

References

  1. 1.
    Hair ML, Hertl W (1970). J Phys Chem 74:91CrossRefGoogle Scholar
  2. 2.
    Dasgupta M, Kar S, Gupta S, Mukhopadhyay R, Bandyopadhyay A (2013). Prog Rubber Plast Recy Tech 29:151–167CrossRefGoogle Scholar
  3. 3.
    Pongdong W, Kummerlöwe C, Vennemann N, Thitithammawong A, Nakason C (2018). J Appl Polym Sci 135:46681CrossRefGoogle Scholar
  4. 4.
    Ooi ZX, Ismail H, Bakar AA (2014). Polym Test 33:145CrossRefGoogle Scholar
  5. 5.
    Kanking S, Niltui P, Wimolmala E, Sombatsompop N (2012). Mater Des 41:74CrossRefGoogle Scholar
  6. 6.
    Hariwongsanupab N, Thanawan S, Amornsakchai T, Vallat MF, Mougin K (2017). Polym Test 57:94CrossRefGoogle Scholar
  7. 7.
    Keerthika B, Umayavalli M, Jeyalalitha T, Krishnaveni N (2016). Ecotoxicol Environ Saf 130:1CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yu P, He H, Jia Y, Tian S, Chen J, Jia D, Luo Y (2016). Polym Test 54:176CrossRefGoogle Scholar
  9. 9.
    Janssen NA, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, Keuken M, Atkinson RW, Anderson HR, Brunekreef B, Cassee FR (2011). Environ Health Perspect 119:1691–1699CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Seliem MK, Komarneni S, Parette R, Katsuki H, Cannon FS, Shahien MG, Khalil AA, Abd El-Gaid IM (2010). Mater Res Innov 14:351–354CrossRefGoogle Scholar
  11. 11.
    Suprakas SR, Mukul B (1999). Mater Res Bull 34:1187–1194CrossRefGoogle Scholar
  12. 12.
    Sáenz A, Montero ML, Mondragón G (2003). Mater Res Innov 7:68–73CrossRefGoogle Scholar
  13. 13.
    Teh PL, Mohd Ishak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US (2004). Eur Polym J 40:2513–2521CrossRefGoogle Scholar
  14. 14.
    Kader MA, Kim K, Lee YS, Nah C (2006). J Mater Sci 41:7341–7352CrossRefGoogle Scholar
  15. 15.
    Valadares LF, Leite CAP, Galembeck F (2006). Polymer 47:672–678CrossRefGoogle Scholar
  16. 16.
    Fang Q, Liu X, Wang N, Ma C, Yang F (2015). Sci Eng Compos Mater 22:607–612CrossRefGoogle Scholar
  17. 17.
    Hashim AS, Azahari B, Ikeda Y, Kohjiya S (1997). Rubber Chem Technol 71:289–299CrossRefGoogle Scholar
  18. 18.
    Wagner MP (1987) In: Morton M (ed) Rubber technology. Van Nostrand Reinhold, New York, p 86Google Scholar
  19. 19.
    Rauline R (1992) U.S. Patent 5,227,425, July 13, 1993; E.P. 0501227A1, September 2, 1992Google Scholar
  20. 20.
    Mathew G, Huh MY, Rhee JM, Lee MH, Nan C (2004). Polym Adv Technol 15:400CrossRefGoogle Scholar
  21. 21.
    Schwaiger B, Blume A (2000). Rubb World 222:32–38Google Scholar
  22. 22.
    Gauthier C, Reynaud E, Vassoille R, Ladouuce-Stelandre L (2004). Polymer 45:2761CrossRefGoogle Scholar
  23. 23.
    Wolff S, Wang MJ (1992). Rubber Chem Technol 65:329CrossRefGoogle Scholar
  24. 24.
    Atikler U, Basalp D, Tihminlioglu F (2006). J Appl Polym Sci 102:4460–4467CrossRefGoogle Scholar
  25. 25.
    Silva RV, de Brito J, Dhir RK (2015). Constr Build Mater 83:108–118CrossRefGoogle Scholar
  26. 26.
    Wibowo E, Rokhmat M, Sutisna, Murniati R, Khairurrijal, Abdullah M (2017). Mater Res Express 4:064002CrossRefGoogle Scholar
  27. 27.
    Inglezakis VJ, Stylianou MA, Loizidou M, Zorpas AA (2016). Desalin Water Treat 57:11610–11622CrossRefGoogle Scholar
  28. 28.
    Kyziol-Komosinska J, Rosik-Dulewska C, Franus M, Antoszczyszyn-Szpicka P, Czupiol J, Krzyzewska I (2015). Pol J Environ Stud 24(3):1111–1123CrossRefGoogle Scholar
  29. 29.
    Breck DW (1974) Zeolites molecular sieves: structure, chemistry, and uses. John Wiley, New York, p 465Google Scholar
  30. 30.
    Dyer A (1988) Zeolites molecular sieves. Wiley, Chichester, p 385Google Scholar
  31. 31.
    Gianeto GP (1990) Zeolitas Características1st edn. Editorial Innovación Tecnológica, CaracasGoogle Scholar
  32. 32.
    Dogan H, Hilmioglu ND (2010). Desalination 258:120–127CrossRefGoogle Scholar
  33. 33.
    Şener T, Okumuş E, Gürkan T, Yilmaz L (2010). Desalination 261:181–185CrossRefGoogle Scholar
  34. 34.
    Wang W, Zhao D, Yang J, Nishi T, Ito K, Zhao X, Zhang L (2016). Sci Rep 6:22810CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lv L, Bai SX, Zhang H, Wang J, Yang J, Xiao JY (2006). Mater Sci Eng A Struct 433:121–123CrossRefGoogle Scholar
  36. 36.
    Zhou KC, Cao DM, Li ZY (2006). Trans Nonferrous Met Soc China 16:517–521CrossRefGoogle Scholar
  37. 37.
    Sohn MS, Kim KS, Hong SH (2003). J Appl Polym Sci 87:1595–1601CrossRefGoogle Scholar
  38. 38.
    Nakatsuka K, Yokoyama H, Shimoiizaka J, Funaki T (1987). J Magn Magn Mater 65:359–362CrossRefGoogle Scholar
  39. 39.
    Wibowo E, Rokhmat M, Sutisna, Murniati R, Khairurrijal, Abdullah M (2017). Proc Eng 170:8–13CrossRefGoogle Scholar
  40. 40.
    Wibowo E, Rokhmat M, Sutisna, Murniati R, Khairurrijal, Abdullah M (2015). Adv Mat Res 1112:154–157Google Scholar
  41. 41.
    Oliveira MG, Soares BG (2001). Polym Polym Compos 9(7):459–468Google Scholar
  42. 42.
    Ashraf M, El-Fattah MA, Dardir MM (2014). J Prog Org Coat 78:83–89Google Scholar
  43. 43.
    Cifriadi A, Chalid M, Puspitasari S (2017). Int J Technol 8:448–457CrossRefGoogle Scholar
  44. 44.
    Murniati R, Novita N, Sutisna, Wibowo E, Iskandar F, Abdullah M (2017). IOP Conf Ser Mat Sci Eng 214:1200.2CrossRefGoogle Scholar
  45. 45.
    Murniati R, Sutisna, Wibowo E, Rokhmat M, Iskandar F, Abdullah M (2017). Proc Eng 170:101–107CrossRefGoogle Scholar
  46. 46.
    Ramadhan A, Fathurrohman MI, Soegijono B (2015). Proc Chem 16:85–90CrossRefGoogle Scholar
  47. 47.
    Siriyong T, Keawwattana W, Kasetsart J (2012). Nat Sci 46:918–930Google Scholar
  48. 48.
    Mohd Nor NA, Othman N (2016). Proc Chem 19:351–358CrossRefGoogle Scholar
  49. 49.
    Poh BT, Ng CC (1998). Eur Polym 34:975–979CrossRefGoogle Scholar
  50. 50.
    Vijayalekshmi V (2009) Studies on Natural Rubber/Clay Nanocomposites: Effect of Maleic Anhydride Grafting of Rubber. Ph.D. Thesis. August 2009Google Scholar
  51. 51.
    Attharangsan S, Ismail H, Abu Bakar M, Ismail J (2012). Polymer Plast Tech Eng 51:655–662CrossRefGoogle Scholar
  52. 52.
    Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A (2009). Polymer Plast Tech Eng 48:313–323CrossRefGoogle Scholar
  53. 53.
    Jovanovic V, Simendic BJ, Jovanovic SS, Moarkovic G, Concovic MM, Chemical J (2009). Ind Chem Eng 15:283–289Google Scholar
  54. 54.
    Voet A, Morawski JC, Donnet JB (1977). Rubber Chem Technol 50:342CrossRefGoogle Scholar
  55. 55.
    Pal PK, De SK (1982). Rubber Chem Technol 55:1370CrossRefGoogle Scholar
  56. 56.
    Tian Y, Liu Y, He M, Zhao G, Sun Y (2013). Mater Res Bull 48:2002–2005CrossRefGoogle Scholar
  57. 57.
    da Costa HM, Nunes RCR, Visconte LLY, Furtado CRG (2001). Raw Mater Appl 54:242–249Google Scholar
  58. 58.
    Al-Nesrawy SH, Mahmood FF, Hadi NM, Abdmoeen FK (2017). J Chem Pharm Sci 10:983–988Google Scholar
  59. 59.
    Ismail R, Mahadi ZA, Ishak IS (2018). IOP Conf EES 140:012133Google Scholar
  60. 60.
    Wibowo E, Sutisna, Rokhmat M, Khairurrijal, Abdullah M (2016). Powd Technol 301:911–919CrossRefGoogle Scholar
  61. 61.
    Wibowo E, Rokhmat M, Sutisna, Yuliza E, Khairurrijal, Abdullah M (2016). Powder Technol 301:44–57CrossRefGoogle Scholar
  62. 62.
    An F, Lu C, Li Y, Guo J, Lu X, Lu H et al (2011). Mater Des 33:197–202CrossRefGoogle Scholar
  63. 63.
    Rahmanian S, Thean KS, Suraya AR, Shazed MA, Mohd Salleh MA, Yusoff HM (2013). Mater Des 43:10–16CrossRefGoogle Scholar
  64. 64.
    Wode F, Tzounis L, Kirsten M, Constantinou M, Georgopanos P, Rangou S (2012) et al. Polymer 53:4438–4447CrossRefGoogle Scholar
  65. 65.
    Bhattacharyya S, Sinturel C, Bahloul O, Saboungi ML, Thomas S, Salvetat JP (2008). Carbon 46:1037–1045CrossRefGoogle Scholar
  66. 66.
    Das R, Kumar R, Banerjeea SL, Kundu PP (2014). RSC Adv 4:59265–59274CrossRefGoogle Scholar
  67. 67.
    SUN CT, BAI JM (1995). Int J Mech Sci 37(4):441–455CrossRefGoogle Scholar
  68. 68.
    Lejon J, Kari L (2009). Plast Rubber Compos 38:321–326CrossRefGoogle Scholar
  69. 69.
    Steidel RF (1989) An Introduction to Mechanical Vibrations3rd edn. Wiley 37Google Scholar

Copyright information

© The Polymer Society, Taipei 2020

Authors and Affiliations

  1. 1.Department of PhysicsBandung Institute of TechnologyBandungIndonesia
  2. 2.Indonesian Rubber Research InstituteBogorIndonesia

Personalised recommendations