Advertisement

Journal of Polymer Research

, 27:36 | Cite as

Oxygen-rich porous carbons from carbonyl modified hyper-cross-linked polymers for efficient CO2 capture

  • Yafei Sang
  • Gui Chen
  • Jianhan HuangEmail author
ORIGINAL PAPER
  • 22 Downloads

Abstract

A series of carbonyl modified hyper-cross-linked polymers (HCPs) with different porosity was prepared and they were carbonized for production of oxygen-rich porous carbons. The results show that these carbons have high Brunauer-Emmett-Teller (BET) surface area (440–1769 m2/g) and outstanding microporosity (72–87%), the oxygen is greatly improved after the carbonization with the oxygen content of 20.7–29.2 wt%. The CO2 uptake of PDVC-700-1 is the highest with the value of 303 mg/g at 273 K and 1.0 bar and PDV-pc has the highest CO2/N2 selectivity of 46.8. Interestingly, the CO2 adsorption is linear correlated to the ultramicropore volume (d < 1.0 nm) with the correlation coefficient of 0.9935 (273 K, 1.0 bar) and the O content also plays a role in CO2 adsorption. These porous carbons have medium adsorption heat (28.5–34.9 kJ/mol) with an excellent desorption and repeated use performance.

Keywords

Porous carbons Hyper-cross-linked polymers CO2 capture 

Notes

Acknowledgments

The National Natural Science Foundation of China (No. 51673216) and the Fundamental Research Funds for the Central Universities Central South University (No. 2018zzts116) are acknowledged for the financial supports.

Supplementary material

10965_2020_2009_MOESM1_ESM.doc (5 mb)
ESM 1 (DOC 5072 kb)

References

  1. 1.
    Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305CrossRefGoogle Scholar
  2. 2.
    Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443CrossRefGoogle Scholar
  3. 3.
    Younas M, Sohail M, Leong LK, Bashir MJ, Sumathi S (2016) Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol 13:1839–1860CrossRefGoogle Scholar
  4. 4.
    Drage TC, Snape CE, Stevens LA, Wood J, Wang JW, Cooper AI, Dawson R, Guo X, Satterley C, Irons R (2012) Materials challenges for the development of solid sorbents for post-combustion carbon capture. J Mater Chem 22:2815–2823CrossRefGoogle Scholar
  5. 5.
    Yu M, Wang XY, Yang X, Zhao Y, Jiang JX (2015) Conjugated microporous copolymer networks with enhanced gas adsorption. Polym Chem 6:3217–3223CrossRefGoogle Scholar
  6. 6.
    Patel HA, Karadas F, Byun J, Park J, Deniz E, Canlier A, Jung Y, Atilhan M, Yavuz C (2013) Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Adv Funct Mater 23:2270–2276CrossRefGoogle Scholar
  7. 7.
    Wang Q, Tay HH, Zhong Z, Luo J, Borgna A (2012) Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity. Energy Environ Sci 5:7526–7530CrossRefGoogle Scholar
  8. 8.
    Song X, Zhang Y, Chang C (2012) Novel method for preparing activated carbons with high specific surface area from rice husk. Ind Eng Chem Res 51:15075–15081CrossRefGoogle Scholar
  9. 9.
    Alabadi A, Razzaque S, Yang YW, Chen S, Tan B (2015) Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem Eng J 281:606–612CrossRefGoogle Scholar
  10. 10.
    Gao H, Ding L, Li W, Ma G, Bai H, Li L (2016) Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide. ACS Macro Lett 5:377–381CrossRefGoogle Scholar
  11. 11.
    Li B, Gong R, Luo Y, Tan B (2011) Tailoring the pore size of hypercrosslinked polymers. Soft Matter 7:10910–10916CrossRefGoogle Scholar
  12. 12.
    Kim S, Seo M (2018) Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors. Polym Chem 56:900–913CrossRefGoogle Scholar
  13. 13.
    Castaldo R, Avolio R, Cocca M, Gentile G, Errico ME, Avella M, Carfagna C, Ambrogi V (2017) Synthesis and adsorption study of hypercrosslinked styrene-based nanocomposites containing multi-walled carbon nanotubes. RSC Adv 7:6865–6874CrossRefGoogle Scholar
  14. 14.
    Hou L, Wang Z, Xu J, Chen Z (2019) Poly (arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation. J Polym Res 26:243–252CrossRefGoogle Scholar
  15. 15.
    Li ZH, Wu DC, Liang YR, Fu RW, Matyjaszewski K (2014) Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J Am Chem Soc 136:4805–4808PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    EL-Mahdy AFM, Hung YH, Mansoure TH, Yu HH, Hsu YS, Wu KCW, Kuo SW (2019) Synthesis of [3+3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. J Tai-wan Inst Chem E 103:199–208CrossRefGoogle Scholar
  17. 17.
    Shao LS, Sang YF, Huang JH, Liu Y-N (2018) Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture. Chem Eng J 353:1–14CrossRefGoogle Scholar
  18. 18.
    Presser V, McDonough J, Yeon S, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived darbon. Energy Environ Sci 4:3059–3066CrossRefGoogle Scholar
  19. 19.
    Hu X, Radosz M, Cychosz KA, Thommes M (2011) CO2-Filling capacity and selectivity of carbon nanopores: synthesis, texture,and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol 45:7068–7074PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wang C, Yang L, Chang G (2017) Microporous coordination polymer with secondary amine functional groups for CO2 uptake and selectivity. J Polym Res 24:219–225CrossRefGoogle Scholar
  21. 21.
    Wahby A, Ramos-Fernandez JM (2010) High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 3:974–981PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10283–10285CrossRefGoogle Scholar
  23. 23.
    J.W. To, He JJ, Mei JG, Haghpanah R, Chen Z, Kurosawa T, Chen SC, Wilcox J, Bao ZN (2016) Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J Am Chem Soc 138:1001–1009CrossRefGoogle Scholar
  24. 24.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Thommes M, Kaneko K, Neimark A (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  26. 26.
    Pan L, Chen Q, Zhu JH, Yu JG, He YJ, Han BH (2015) Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel-crafts alkylation. Polym Chem 6:2478–2487CrossRefGoogle Scholar
  27. 27.
    Hu XM, Chen Q, Zhao YC, Laursen BW, Han BH (2014) Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities. J Mater Chem A 2:14201–14208CrossRefGoogle Scholar
  28. 28.
    Zhang C, Yang X, Zhao Y, Wang XY, Yu M, Jiang JX (2015) Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer 61:36–41CrossRefGoogle Scholar
  29. 29.
    Sun C, Wang P, Wang H, Han B (2016) All-thiophene-based conjugated porous organic polymers. Polym Chem 7:5031–5038CrossRefGoogle Scholar
  30. 30.
    Islamoglu T, Kim T, Kahveci Z, El-Kadri OM, El-Kaderi HM (2016) Systematic postsynthetic modification of nanoporous organic frameworks for enhanced CO2 capture from flue gas and landfill gas. J Phys Chem C 120:2592–2599CrossRefGoogle Scholar
  31. 31.
    Gu S, He J, Zhu YL, Wang Z, Chen D, Yu GP, Tao K (2016) Facile carbonization of microporous organic polymers into hierarchically porous carbons targeted for effective CO2 uptake at low pressures. ACS Appl Mater Interfaces 8:18383–18392PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kou J, Sun LB (2016) Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: efficient adsorbents for selective CO2 capture. Ind Eng Chem Res 55:10916–10925CrossRefGoogle Scholar
  33. 33.
    Zhu XL, Wang PY, Peng C, Yang J, Yan XB (2014) Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chin Chem Lett 25:929–932CrossRefGoogle Scholar
  34. 34.
    Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116CrossRefGoogle Scholar
  35. 35.
    Ashourirad B, Arab P, Verlander A, El-Kaderi HM (2016) From azo-linked polymers to microporous heteroatom-doped carbons: tailored chemical and textural properties for gas separation. ACS Appl Mater Interfaces 8:8491–8501PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Liu L, Xie ZH, Deng QF, Hou XX, Yuan ZY (2017) One-pot carbonization enrichment of nitrogen in microporous carbon spheres for efficient CO2 capture. J Mater Chem A 5:418–425CrossRefGoogle Scholar
  37. 37.
    Zhang T, Huang JH (2017) Tunable synthesis of the polar modified hyper-cross-linked resins and application to the adsorption. J Colloid Interf Sci 505:383–391CrossRefGoogle Scholar
  38. 38.
    Shao LS, Huang JH (2017) N-vinylimidazole-modified hyper-cross-linked resins with controllable porosity and polarity and their efficient adsorption towards p-ni-trophenol from aqueous solution. J. Colloid Interf Sci. 507:42–50CrossRefGoogle Scholar
  39. 39.
    Sui ZY, Meng YN, Xiao PW, Zhao ZQ, Wei ZX, Han BH (2015) Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl Mater Interfaces 7:1431–1438PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cai JJ, Qi JB, Yang CP, Zhao XB (2014) Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH 4 and H 2 storage and CO2 capture. ACS Appl Mater Interfaces 6:3703–3711PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang YY, Xiong SH, Li FF, Tao J, Tang JT, Liu C, Yuan KY, Pan CY, Yu GP, Liu YN (2019) Flexible Ketone-bridged organic porous nanospheres: promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation. Chem Eng J 358:1383–1389CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2020

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.College of Chemistry and MaterialsHuaihua UniversityHuaihuaChina

Personalised recommendations