Advertisement

Journal of Polymer Research

, 26:289 | Cite as

A review and future prospect of polymer blend mixed matrix membrane for CO2 separation

  • Kar Kit Wong
  • Zeinab Abbas JawadEmail author
REVIEW PAPER
  • 23 Downloads

Abstract

In recent years, carbon capture technology has received much attention to limit the adverse effect caused by rising carbon dioxide (CO2) concentration in the atmosphere. Membrane technology has risen as an attractive option for carbon capture as it is less energy–intensive and more environmentally friendly compared with adsorption, absorption, and cryogenic separation. Polymeric membranes dominate the gas separation industries as they are cheaper and easier to fabricate compared with inorganic membranes but are bound to the permeance-selectivity trade-off limitation. Recently, researchers have been modifying polymeric membrane by polymer blending and mixed matrix membranes (MMMs) to overcome the limitation. Polymer blending yields a polymer blend that combines the benefits of two or more polymeric material. Polyethylene glycol (PEG) and polyethersulfone (PES) are common polymeric materials used in the gas separation industry for membrane fabrication. PEG and PES were reviewed in this paper as potential polymer blends that efficiently separate CO2 due to their chemical characteristics. Another technique to overcome the trade-off limitation is fabricating MMMs that incorporate both polymeric membrane material and inorganic filler. However, MMM fabrication presents challenges such as polymer-filler incompatibility, void formation, and filler agglomeration due to unsuitable filler. Functionalized multi-walled carbon nanotubes (MWCNTs-F) were reviewed as fillers that are able to overcome the dispersion and polymer-compatibility issues and increase the gas separation performance of membranes. Hence, MMM that is fabricated from PEG, PES, and MWCNTs-F that combines both polymer blending and MMM techniques is believed to be a breakthrough for CO2/N2 separation.

Keywords

Functionalized multi-walled carbon nanotubes (MWCNTs-F) Global warming Carbon capture Membrane technology Gas separation 

Nomenclature

6FDA-Durene

4,4′-(Hexafluoroisopropylidene)-diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine

CA

Cellulose acetate

CAB

Cellulose acetate butyrate

CH4

Methane

CMS

Carbon molecular sieves

CNTs

Carbon nanotubes

CO

Carbon monoxide

CO2

Carbon dioxide

dCi/dx

Concentration gradient of component i over length of x

Dij

Diffusion coefficient

dp

Pore size

ds

Molecular size of transported species

GO

Graphene oxide

H2

Hydrogen

H2O

Water

Ji

Flux of component i

MEA

Monoethanolamine

MMM

Mixed matrix membrane

MMMs

Mixed matrix membranes

M-PVDF

Modified poly(vinylidene fluoride)

MWCNTs

Multi-walled carbon nanotubes

N2

Nitrogen

NIPS

Non-solvent induced phase separation

NOx

Nitrogen oxides

O2

Oxygen

P84

Polyimide P84

PEBA

Polyether-block-amide

PEG

Polyethylene glycol

PEI

Polyetherimide

PES

Polyethersulfone

PI

Polyimide

PSA

Pressure swing adsorption

PSF

Polysulfone

PTFPMS

Polytrifluoropropylmethylsiloxane

PU

Polyurethane

PVA

Polyvinyl alcohol

PVAc

Polyvinyl acetate

PVDF

Poly(vinylidene fluoride)

SO2

Sulfur dioxide

SWCNTs

Single-walled carbon nanotubes

Tg

Glass transition temperature

TIPS

Thermal induced phase separation

TSA

Temperature swing adsorption

VIPS

Vapor induced phase separation

ZIF-8

Zeolitic imidazolate framework-8

Zn/Ni-ZIF-8

Nickel-substituted seolitic imidazolate framework-8

λ

Mean free path

Notes

References

  1. 1.
    United Nations DoEaSA, Population Division (2019) World Population Prospects 2019: Highlights (ST/ESA/SER.A/423)Google Scholar
  2. 2.
    US EIA (2019) International Energy Outlook 2019 with projections to 2050Google Scholar
  3. 3.
    Kannan N, Vakeesan D (2016) Solar energy for future world: a review. Renew Sust Energ Rev 62:1092–1105.  https://doi.org/10.1016/j.rser.2016.05.022 CrossRefGoogle Scholar
  4. 4.
    US EIA (2018) Electricity and the environment – basics. https://www.eia.gov/energyexplained/print.php?page=electricity_environment. Accessed 18 Mar 2019
  5. 5.
    US EPA (2018) Inventory of U.S. Greenhouse gas emissions and sinks 1990–2016Google Scholar
  6. 6.
    IPCC (2014) Climate change 2014: synthesis report. Contribution of working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  7. 7.
    Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89(9):1446–1460.  https://doi.org/10.1016/j.cherd.2011.01.028 CrossRefGoogle Scholar
  8. 8.
    Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443.  https://doi.org/10.1016/j.rser.2014.07.093 CrossRefGoogle Scholar
  9. 9.
    Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36(12):4317–4322.  https://doi.org/10.1016/j.enpol.2008.09.058 CrossRefGoogle Scholar
  10. 10.
    Sugu L, Jawad ZA (2019) Formation of low acetyl content cellulose acetate membrane for CO2 /N2 separation. J Phys Sci 30(1):111–125.  https://doi.org/10.21315/jps2019.30.1.9 CrossRefGoogle Scholar
  11. 11.
    Ahmad AL, Salaudeen YO, Jawad ZA (2019) Polymeric membrane for flue gas separation and other minor components in carbon dioxide capture. In: Jawad ZA (ed) Membrane technology for CO2 sequestration and separation. CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Jansen D, Gazzani M, Manzolini G, Dijk EV, Carbo M (2015) Pre-combustion CO2 capture. Int J Greenh Gas Con 40:167–187.  https://doi.org/10.1016/j.ijggc.2015.05.028 CrossRefGoogle Scholar
  13. 13.
    Scholes CA, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes – strategies for membrane gas separation. Int J Greenh Gas Con 4(5):739–755.  https://doi.org/10.1016/j.ijggc.2010.04.001 CrossRefGoogle Scholar
  14. 14.
    Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J, Rahiala S, Hyppänen T, Mletzko J, Kather A, Santos S (2015) Oxyfuel combustion for CO2 capture in power plants. Int J Greenh Gas Con 40:55–125.  https://doi.org/10.1016/j.ijggc.2015.06.010 CrossRefGoogle Scholar
  15. 15.
    Jain N, Srivastava A, Singh TN (2016) Carbon capture, transport and geologic storage: a brief introduction. Geologic Carbon Sequestration. Springer, Cham.  https://doi.org/10.1007/978-3-319-27019-7_1 CrossRefGoogle Scholar
  16. 16.
    Xue B, Yu Y, Chen J, Luo X, Wang M (2016) A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations. Int J Coal Sci Technol 4(1):15–24.  https://doi.org/10.1007/s40789-016-0149-7 CrossRefGoogle Scholar
  17. 17.
    Mason JA, McDonald TM, Bae T-H, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR (2015) Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J Am Chem Soc 137(14):4787–4803.  https://doi.org/10.1021/jacs.5b00838 CrossRefPubMedGoogle Scholar
  18. 18.
    Adewole J, Ahmad A (2017) Polymeric membrane materials selection for high-pressure CO2 removal from natural gas. J Polym Res 24(5):1–13.  https://doi.org/10.1007/s10965-017-1231-6 CrossRefGoogle Scholar
  19. 19.
    Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89(9):1609–1624.  https://doi.org/10.1016/j.cherd.2010.11.005 CrossRefGoogle Scholar
  20. 20.
    Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54(18):4729–4761.  https://doi.org/10.1016/j.polymer.2013.05.075 CrossRefGoogle Scholar
  21. 21.
    Yuan P, Qiu Z, Liu J (2017) Recent enlightening strategies for CO2 capture: a review. Paper presented at the IOP Conf. Ser. Earth Environ. SciGoogle Scholar
  22. 22.
    Knapik E, Kosowski P, Stopa J (2018) Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy. Chem Eng Res Des 131:66–79.  https://doi.org/10.1016/j.cherd.2017.12.027 CrossRefGoogle Scholar
  23. 23.
    Wilcox J (2012) Carbon capture. Springer, New York.  https://doi.org/10.1007/978-1-4614-2215-0 CrossRefGoogle Scholar
  24. 24.
    Belaissaoui B, Moullec YL, Willson D, Favre E (2012) Hybrid membrane cryogenic process for post-combustion CO2 capture. J Membrane Sci 415–416:424–434.  https://doi.org/10.1016/j.memsci.2012.05.029 CrossRefGoogle Scholar
  25. 25.
    Safdarnejad SM, Hedengren JD, Baxter LL (2015) Plant-level dynamic optimization of cryogenic carbon capture with conventional and renewable power sources. Appl Energy 149:354–366.  https://doi.org/10.1016/j.apenergy.2015.03.100 CrossRefGoogle Scholar
  26. 26.
    Yu C-H, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12(5):745–769.  https://doi.org/10.4209/aaqr.2012.05.0132 CrossRefGoogle Scholar
  27. 27.
    Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35(6):2610–2628.  https://doi.org/10.1016/j.energy.2010.02.030 CrossRefGoogle Scholar
  28. 28.
    Lin Y, Pan T, Wong D, Jang SS, Chi Y, Yeh C (2011) Plantwide control of CO2 capture by absorption and stripping using monoethanolamine solution. Ind Eng Chem Res 50(3):1338–1345.  https://doi.org/10.1021/ie100771x CrossRefGoogle Scholar
  29. 29.
    Lv Y, Yan G, Xu C, Xu M, Sun L (2012) Review on membrane technologies for carbon dioxide capture from power plant flue gas. Adv Mater Res 602–604:1140–1144.  https://doi.org/10.4028/www.scientific.net/AMR.602-604.1140 CrossRefGoogle Scholar
  30. 30.
    Roussanaly S, Anantharaman R, Lindqvist K, Zhai H, Rubin E (2016) Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J Membrane Sci 511:250–264.  https://doi.org/10.1016/j.memsci.2016.03.035 CrossRefGoogle Scholar
  31. 31.
    Nafisi V, Hägg M-B (2014) Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Membrane Sci 459:244–255.  https://doi.org/10.1016/j.memsci.2014.02.002 CrossRefGoogle Scholar
  32. 32.
    Luo J, He X, Si Z (2017) Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation. J Polym Res 24(1):1–14.  https://doi.org/10.1007/s10965-016-1163-6 CrossRefGoogle Scholar
  33. 33.
    Rosli A, Low SC (2019) Molecularly engineered switchable photo-responsive membrane in gas separation for environmental protection. Environ Eng Res 0:0–0.  https://doi.org/10.4491/eer.2019.090 CrossRefGoogle Scholar
  34. 34.
    Lee RJ, Jawad ZA, Ahmad AL, Chua HB, Ngang HP, Zein SHS (2019) Rheological evaluation of the fabrication parameters of cellulose acetate butyrate membrane on the CO2/N2 separation performance. In: Jawad ZA (ed) Membrane technology for CO2 sequestration and separation. CRC Press, Boca RatonGoogle Scholar
  35. 35.
    Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES (2015) Membrane-based carbon capture from flue gas: a review. J Clean Prod 103:286–300.  https://doi.org/10.1016/j.jclepro.2014.10.050 CrossRefGoogle Scholar
  36. 36.
    Ismail AF, Khulbe KC, Matsuura T (2015) Gas separation membranes: polymeric and inorganic. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-01095-3 CrossRefGoogle Scholar
  37. 37.
    Norahim N, Yaisanga P, Faungnawakij K, Charinpanitkul T, Klaysom C (2018) Recent membrane developments for CO2 separation and capture. Chem Eng Technol 41(2):211–223.  https://doi.org/10.1002/ceat.201700406 CrossRefGoogle Scholar
  38. 38.
    Manimaran D, Jawad ZA, Chew TL (2019) Effect of solvent evaporation time and casting thickness on the separation performance of cellulose acetate butyrate blend membrane. JAMST 23(2):11–28.  https://doi.org/10.11113/amst.v23n2.151 CrossRefGoogle Scholar
  39. 39.
    Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Pérez A, Rana MS (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep Purif Technol 188:431–450.  https://doi.org/10.1016/j.seppur.2017.07.051 CrossRefGoogle Scholar
  40. 40.
    Ladewig B, Al-Shaeli MNZ (2017) Fundamentals of membrane bioreactors. Springer transactions in civil and environmental engineering Springer, Singapore.  https://doi.org/10.1007/978-981-10-2014-8_2 Google Scholar
  41. 41.
    Mannan HA, Mukhtar H, Murugesan T, Nasir R, Mohshim DF, Mushtaq A (2013) Recent applications of polymer blends in gas separation membranes. Chem Eng Technol 36(11):1838–1846.  https://doi.org/10.1002/ceat.201300342 CrossRefGoogle Scholar
  42. 42.
    Akbarian I, Fakhar A, Ameri E, Sadeghi M (2018) Gas-separation behavior of poly(ether sulfone)–poly(ethylene glycol) blend membranes. J Appl Polym Sci 135(44):46845.  https://doi.org/10.1002/app.46845 CrossRefGoogle Scholar
  43. 43.
    Low BT, Zhao L, Merkel TC, Weber M, Stolten D (2013) A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J Membrane Sci 431:139–155.  https://doi.org/10.1016/j.memsci.2012.12.014 CrossRefGoogle Scholar
  44. 44.
    Liu J, Hou X, Park HB, Lin H (2016) High-performance polymers for membrane CO2/N2 separation. Chemistry 22(45):15980–15990.  https://doi.org/10.1002/chem.201603002 CrossRefPubMedGoogle Scholar
  45. 45.
    Yuenyao C, Chittrakarn T, Tirawanichakul Y, Sirijarukul S (2016) Surface modification of asymmetric polysulfone/polyethylene glycol membranes by DC Ar-glow discharge plasma. Int JPolym Sci 2016(2016).  https://doi.org/10.1155/2016/4759150 CrossRefGoogle Scholar
  46. 46.
    Zuo D-y, Xu Y-y, Xu W-l, Zou H-t (2008) The influence of PEG molecular weight on morphologies and properties of PVDf asymmetric membranes. Chinese J Polym Sci 26(04):405–414.  https://doi.org/10.1142/S0256767908003072 CrossRefGoogle Scholar
  47. 47.
    Boutilier MSH, Hadjiconstantinou NG, Karnik R (2017) Knudsen effusion through polymer-coated three-layer porous graphene membranes. Nanotechnology 28(18):184003.  https://doi.org/10.1088/1361-6528/aa680f CrossRefPubMedGoogle Scholar
  48. 48.
    Naderi A, Yong WF, Xiao Y, Chung T-S, Weber M, Maletzko C (2018) Effects of chemical structure on gas transport properties of polyethersulfone polymers. Polymer 135:76–84.  https://doi.org/10.1016/j.polymer.2017.12.014 CrossRefGoogle Scholar
  49. 49.
    Mansourpanah Y, Ostadchinigar A (2017) Preparation of chemically attached polyamide thin film membrane using different diamines: separation and computational investigation. J Polym Res 24(2):1–16.  https://doi.org/10.1007/s10965-017-1186-7 CrossRefGoogle Scholar
  50. 50.
    Hadi SHAA, Mannan HA, Mukhtar H, Shaharun MS, Murugesan T (2016) Morphological analysis of polyethersulfone/polyvinyl acetate blend membrane synthesized at various polymer concentrations. Paper presented at the IOP Conf. Ser. Earth Environ. SciCrossRefGoogle Scholar
  51. 51.
    Yong WF, Chung T-S, Weber M, Maletzko C (2018) New polyethersulfone (PESU) hollow fiber membranes for CO2 capture. J Membrane Sci 552:305–314.  https://doi.org/10.1016/j.memsci.2018.02.008 CrossRefGoogle Scholar
  52. 52.
    Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95.  https://doi.org/10.1016/j.desal.2013.06.016 CrossRefGoogle Scholar
  53. 53.
    Amirilargani M, Sadrzadeh M, Mohammadi T (2010) Synthesis and characterization of polyethersulfone membranes. J Polym Res 17(3):363–377.  https://doi.org/10.1007/s10965-009-9323-6 CrossRefGoogle Scholar
  54. 54.
    Eykens L, De Sitter K, Dotremont C, Pinoy L, Van Der Bruggen B (2017) Membrane synthesis for membrane distillation: a review. Sep Purif Technol 182:36–51.  https://doi.org/10.1016/j.seppur.2017.03.035 CrossRefGoogle Scholar
  55. 55.
    Adatia K, Raja M, Vadgama P (2017) An electrochemical study of microporous track-etched membrane permeability and the effect of surface protein layers. Colloids Surf B 158:84–92.  https://doi.org/10.1016/j.colsurfb.2017.06.032 CrossRefGoogle Scholar
  56. 56.
    Miyazaki T, Takenaka M (2017) Precise small-angle X-ray scattering evaluation of the pore structures in track-etched membranes: comparison with other convenient evaluation methods. Nucl Instr Meth Phys Res B 394:121–125.  https://doi.org/10.1016/j.nimb.2017.01.002 CrossRefGoogle Scholar
  57. 57.
    Makkonen-Craig S, Yashina K, Paronen M (2014) Track-etched ultrafiltration polymer membranes produced by light ion irradiation, vol 11. Arcada Working Papers.Google Scholar
  58. 58.
    Idris A, Man Z, Maulud AS, Khan MS (2017) Effects of phase separation behavior on morphology and performance of polycarbonate membranes. Membranes 7(2).  https://doi.org/10.3390/membranes7020021 CrossRefGoogle Scholar
  59. 59.
    Tsai HA, Kuo CY, Lin JH, Wang DM, Deratani A, Pochat-Bohatier C, Lee KR, Lai JY (2006) Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation. J Membrane Sci 278(1–2):390–400.  https://doi.org/10.1016/j.memsci.2005.11.029 CrossRefGoogle Scholar
  60. 60.
    Kuo C-Y, Su S-L, Tsai H-A, Su Y-S, Wang D-M, Lai J-Y (2008) Formation and evolution of a bicontinuous structure of PMMA membrane during wet immersion process. J Membrane Sci 315(1–2):187–194.  https://doi.org/10.1016/j.memsci.2008.02.034 CrossRefGoogle Scholar
  61. 61.
    Figoli A, Marino T, Simone S, Di Nicol E, Li XM, He T, Tornaghi S, Drioli E (2014) Towards non-toxic solvents for membrane preparation: a review. Green Chem 16(9):4034–4059.  https://doi.org/10.1039/c4gc00613e CrossRefGoogle Scholar
  62. 62.
    Bakeri G, Ismail A, Rahimnejad M, Matsuura T (2014) Analysis of polyetherimide/N-methyl-2-pyrrolidone/nonsolvent phase separation behavior. J Polym Res 21(4):1–7.  https://doi.org/10.1007/s10965-014-0386-7 CrossRefGoogle Scholar
  63. 63.
    Kuo C-Y, Lin H-N, Tsai H-A, Wang D-M, Lai J-Y (2008) Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233(1):40–47.  https://doi.org/10.1016/j.desal.2007.09.025 CrossRefGoogle Scholar
  64. 64.
    Chang HH, Beltsios KG, Yu HF, Wu YH, Cheng LP (2015) Novel phase inversion process for symmetric membrane formation through thermal quenching of polymer solution in same solvent. J Appl Polym Sci 132(29):42282.  https://doi.org/10.1002/app.42282 CrossRefGoogle Scholar
  65. 65.
    Morgado PI, Aguiar-Ricardo A, Correia IJ (2015) Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship. J Membrane Sci 490:139–151.  https://doi.org/10.1016/j.memsci.2015.04.064 CrossRefGoogle Scholar
  66. 66.
    Tsai H-A, Kuo C-Y, Su S-L, Wang D-M, Lai J-Y (2009) The morphological evolution of solvent-containing PMMA membranes in various solvent removal processes. J Membrane Sci 345(1):288–297.  https://doi.org/10.1016/j.memsci.2009.09.011 CrossRefGoogle Scholar
  67. 67.
    Xiao T, Wang P, Yang X, Cai X, Lu J (2015) Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications. J Membrane Sci 489:160–174.  https://doi.org/10.1016/j.memsci.2015.03.081 CrossRefGoogle Scholar
  68. 68.
    Tan P, Ooi B, Ahmad A, Low S (2017) Size control and stability study of zeolitic imidazolate framework-8 to prepare mixed matrix membrane. J Phys Sci 28(Suppl. 1):215–226.  https://doi.org/10.21315/jps2017.28.s1.14 CrossRefGoogle Scholar
  69. 69.
    Cha WC, Jawad ZA (2019) The influence of cellulose acetate butyrate membrane structure on CO2 /N2 separation: effect of casting thickness and solvent exchange time. Chem Eng Commun 0.  https://doi.org/10.1080/00986445.2019.1605359
  70. 70.
    Mannan HA, Mukhtar H, Shima Shaharun M, Roslee Othman M, Murugesan T (2016) Polysulfone/poly(ether sulfone) blended membranes for CO2 separation. J Appl Polym Sci 133(5).  https://doi.org/10.1002/app.42946 Google Scholar
  71. 71.
    Robeson LM (2008) The upper bound revisited. J Membrane Sci 320(1):390–400.  https://doi.org/10.1016/j.memsci.2008.04.030 CrossRefGoogle Scholar
  72. 72.
    Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD (2017) 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50(20):7809–7843.  https://doi.org/10.1021/acs.macromol.7b01718 CrossRefGoogle Scholar
  73. 73.
    Patel A, Acharya N (2019) CO2 plasticization effect and selectivity for Pt-Pd alloy coated polycarbonate membrane. J Polym Res 26(5):1–7.  https://doi.org/10.1007/s10965-019-1775-8 CrossRefGoogle Scholar
  74. 74.
    Soleimany A, Hosseini SS, Gallucci F (2017) Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery : a review. Chem Eng Process 122:296–318.  https://doi.org/10.1016/j.cep.2017.06.001 CrossRefGoogle Scholar
  75. 75.
    Tan PC, Ooi BS, Ahmad AL, Low SC (2018) Monomer atomic configuration as key feature in governing the gas transport behaviors of polyimide membrane. J Appl Polym Sci 135(14).  https://doi.org/10.1002/app.46073 CrossRefGoogle Scholar
  76. 76.
    Liu SL, Shao L, Chua ML, Lau CH, Wang H, Quan S (2013) Recent progress in the design of advanced PEO-containing membranes for CO2 removal. Prog Polym Sci 38(7):1089–1120.  https://doi.org/10.1016/j.progpolymsci.2013.02.002 CrossRefGoogle Scholar
  77. 77.
    Zhang Y, Sunarso J, Liu S, Wang R (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Con 12:84–107.  https://doi.org/10.1016/j.ijggc.2012.10.009 CrossRefGoogle Scholar
  78. 78.
    Tan PC, Jawad ZA, Ooi BS, Ahmad AL, Low SC (2016) Correlation between polymer packing and gas transport properties for CO2 /N2 separation in glassy fluorinated polyimide membrane. JESTEC 11(7):935–946Google Scholar
  79. 79.
    Yoshioka T, Kojima K, Shindo R, Nagai K (2017) Gas-separation properties of amine-crosslinked polyimide membranes modified by amine vapor. J Appl Polym Sci 134(10).  https://doi.org/10.1002/app.44569
  80. 80.
    Mosleh S, Mozdianfard M, Hemmati M, Khanbabaei G (2016) Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation. J Polym Res 23(6):1–14.  https://doi.org/10.1007/s10965-016-1005-6 CrossRefGoogle Scholar
  81. 81.
    Lillepärg J, Georgopanos P, Shishatskiy S (2014) Stability of blended polymeric materials for CO2 separation. J Membrane Sci 467:269–278.  https://doi.org/10.1016/j.memsci.2014.05.039 CrossRefGoogle Scholar
  82. 82.
    Nie F, He G, Zhao W, Ju J, Liu Y, Dai Y (2014) Improving CO2 separation performance of the polyethylene glycol (PEG)/polytrifluoropropylsiloxane (PTFPMS) blend composite membrane. J Polym Res 21(1):1–9.  https://doi.org/10.1007/s10965-013-0319-x CrossRefGoogle Scholar
  83. 83.
    Mustafa J, Farhan M, Hussain M (2016) CO2 Separation from flue gases using different types of membranes. J Membrane Sci Technol 6(2).  https://doi.org/10.4172/2155-9589.1000153
  84. 84.
    Mukhtar H, Mannan HA, Minh D, Nasir R, Moshshim DF, Murugesan T (2016) Polymer blend membranes for CO2 separation from natural gas. Paper presented at the IOP Conf. Ser.: Earth Environ. SciGoogle Scholar
  85. 85.
    Farnam M, Mukhtar H, Shariff AM (2016) An investigation of blended polymeric membranes and their gas separation performance. RSC Adv 6(104):102671–102679.  https://doi.org/10.1039/c6ra21574b CrossRefGoogle Scholar
  86. 86.
    Shirvani H, Sadeghi M, Taheri Afarani H, Bagheri R (2018) Polyurethane/poly(vinyl alcohol) blend membranes for gas separation. Fiber Polym 19(5):1119–1127.  https://doi.org/10.1007/s12221-018-1023-6 CrossRefGoogle Scholar
  87. 87.
    Prasad K, Nikzad M, Sbarski I (2018) Permeability control in polymeric systems: a review. J Polym Res 25(11):1–20.  https://doi.org/10.1007/s10965-018-1636-x CrossRefGoogle Scholar
  88. 88.
    Nasir R, Mukhtar H, Man Z, Mohshim DF (2013) Material advancements in fabrication of mixed-matrix membranes. Chem Eng Technol 36(5):717–727.  https://doi.org/10.1002/ceat.201200734 CrossRefGoogle Scholar
  89. 89.
    Ismail AF, Rahim NH, Mustafa A, Matsuura T, Ng BC, Abdullah S, Hashemifard SA (2011) Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Sep Purif Technol 80(1):20–31.  https://doi.org/10.1016/j.seppur.2011.03.031 CrossRefGoogle Scholar
  90. 90.
    Ahmad AL, Jawad ZA, Low SC, Zein SHS (2014) A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation. J Membrane Sci 451:55–66.  https://doi.org/10.1016/j.memsci.2013.09.043 CrossRefGoogle Scholar
  91. 91.
    Lee RJ, Jawad ZA, Ahmad AL, Chua HB (2018) Incorporation of functionalized multi-walled carbon nanotubes (MWCNTs) into cellulose acetate butyrate (CAB) polymeric matrix to improve the CO2/N2 separation. Process Saf Environ 117:159–167.  https://doi.org/10.1016/j.psep.2018.04.021 CrossRefGoogle Scholar
  92. 92.
    Feijani EA, Tavassoli A, Mahdavi H, Molavi H (2018) Effective gas separation through graphene oxide containing mixed matrix membranes. J Appl Polym Sci 135(21).  https://doi.org/10.1002/app.46271 CrossRefGoogle Scholar
  93. 93.
    Guo A, Ban Y, Yang K, Yang W (2018) Metal-organic framework-based mixed matrix membranes: synergetic effect of adsorption and diffusion for CO2/CH4 separation. J Membrane Sci 562:76–84.  https://doi.org/10.1016/j.memsci.2018.05.032 CrossRefGoogle Scholar
  94. 94.
    Zhang X, Zhang T, Wang Y, Li J, Liu C, Li N, Liao J (2018) Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation. J Membrane Sci 560:38–46.  https://doi.org/10.1016/j.memsci.2018.05.004 CrossRefGoogle Scholar
  95. 95.
    Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81(3):243–264.  https://doi.org/10.1016/j.seppur.2011.07.042 CrossRefGoogle Scholar
  96. 96.
    Jenkins S (2017). Zeolites. Chemical Engineering 124(7):28Google Scholar
  97. 97.
    Jusoh N, Yeong YF, Chew TL, Lau KK, Mohd Shariff A (2016) Current development and challenges of mixed matrix membranes for CO2 /CH4 separation. Sep Purif Rev 45(4):321–344.  https://doi.org/10.1080/15422119.2016.1146149 CrossRefGoogle Scholar
  98. 98.
    Sadeghi M, Ahmad M (2018) The gas separation performance of polyurethane–zeolite mixed matrix membranes. Adv Polym Tech 37(2):339–348.  https://doi.org/10.1002/adv.21672 CrossRefGoogle Scholar
  99. 99.
    Dong G, Li H, Chen V (2013) Challenges and opportunities for mixed-matrix membranes for gas separation. J Mater Chem A 1(15):4610–4630.  https://doi.org/10.1039/c3ta00927k CrossRefGoogle Scholar
  100. 100.
    Nasir R, Mukhtar H, Shima Shaharun M, Man Z (2015) Effect of carbon molecular sieve (CMS) concentration on mixed matrix membranes (MMMs) performance for carbon dioxide removal. Appl Mech Mater 754–755(Advanced Materials Engineering and Technology III):869–873.  https://doi.org/10.4028/www.scientific.net/AMM.754-755.869 CrossRefGoogle Scholar
  101. 101.
    Ferreira FV, Cividanes LDS, Brito FS, BRCD M, Franceschi W, EAN S, Thim GP (2016) Functionalization of carbon nanotube an applications. In: Ferreira FV, LDS C, Brito FS et al (eds) Functionalizing graphene and carbon nanotubes: a review. Springer International Publishing, Cham, pp 31–61.  https://doi.org/10.1007/978-3-319-35110-0 CrossRefGoogle Scholar
  102. 102.
    Meyyappan M, Barrera E, Corral EL, Han J, Li J, Li J, Loutfy RO, McGuire K, Moravsky AP, Nguyen CV, Rao AM, Sarrazin P, Shofner ML, Srivastava D, Wexler EM, Yamada T (2005) Carbon nanotubes: science and applications. CRC Press, Boca RatonGoogle Scholar
  103. 103.
    Zhao D, Ren J, Wang Y, Qiu Y, Li H, Hua K, Li X, Ji J, Deng M (2017) High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. J Membrane Sci 521:104–113.  https://doi.org/10.1016/j.memsci.2016.08.061 CrossRefGoogle Scholar
  104. 104.
    Nejad MN, Asghari M, Afsari M (2016) Investigation of carbon nanotubes in mixed matrix membranes for gas separation: a review. ChemBioEng Reviews 3(6):276–298.  https://doi.org/10.1002/cben.201600012 CrossRefGoogle Scholar
  105. 105.
    Sun H, Wang T, Xu Y, Gao W, Li P, Niu QJ (2017) Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation. Sep Purif Technol 177:327–336.  https://doi.org/10.1016/j.seppur.2017.01.015 CrossRefGoogle Scholar
  106. 106.
    Zhao N, Liu T, Liu Z, Su Y, Yu H, Ma J, Yang Y, Jiang Z (2017) Synthesis and properties of sulfonated biphenyl poly(ether sulfone) and its mixed-matrix membranes containing carbon nanotubes for gas separation. J Appl Polym Sci 134(29).  https://doi.org/10.1002/app.44995 CrossRefGoogle Scholar
  107. 107.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861.  https://doi.org/10.1016/j.progpolymsci.2014.01.003 CrossRefGoogle Scholar
  108. 108.
    Shimekit B, Mohd Shariff A, Mukhtar H, Bustam MA, Elkhalifah AEI, Ullah S, Riaz N (2014) Interfacial defects on mixed matrix membranes and mitigation techniques for gas separation: a review. Appl Mech Mater 625(3):653–656.  https://doi.org/10.4028/www.scientific.net/AMM.625.653 CrossRefGoogle Scholar
  109. 109.
    Rosli A, Ahmad AL, Low SC (2019) Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol 221:275–285.  https://doi.org/10.1016/j.seppur.2019.03.094 CrossRefGoogle Scholar
  110. 110.
    Tan PC, Ooi BS, Ahmad AL, Low SC (2019) Formation of a defect-free polyimide/zeolitic imidazolate framework-8 composite membrane for gas separation: in-depth analysis of organic–inorganic compatibility. J Chem Technol Biotechnol 94(9):2792–2804.  https://doi.org/10.1002/jctb.5908 CrossRefGoogle Scholar
  111. 111.
    Lin R, Ge L, Diao H, Rudolph V, Zhu Z (2016) Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation. ACS Appl Mater Interfaces 8(46):32041–32049.  https://doi.org/10.1021/acsami.6b11074 CrossRefPubMedGoogle Scholar
  112. 112.
    Chen XY, Vinh-Thang H, Ramirez AA, Rodrigue D, Kaliaguine S (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv 5(31):24399–24448.  https://doi.org/10.1039/c5ra00666j CrossRefGoogle Scholar
  113. 113.
    Ding X, Li X, Zhao H, Wang R, Zhao R, Li H, Zhang Y (2018) Partial pore blockage and polymer chain rigidification phenomena in PEO/ZIF-8 mixed matrix membranes synthesized by in situ polymerization. Chinese J Chem Eng 26(3):501–508.  https://doi.org/10.1016/j.cjche.2017.07.017 CrossRefGoogle Scholar
  114. 114.
    Shahid S, Nijmeijer K (2014) Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures. J Membrane Sci 470:166–177.  https://doi.org/10.1016/j.memsci.2014.07.034 CrossRefGoogle Scholar
  115. 115.
    Nordin NAHM, Ismail AF, Mustafa A, Murali RS, Matsuura T (2015) Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO 2 /CH 4 separation. RSC Adv 5(38):30206–30215.  https://doi.org/10.1039/c5ra00567a CrossRefGoogle Scholar
  116. 116.
    Fang M, Wu C, Yang Z, Wang T, Xia Y, Li J (2015) ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: experimental result and permeation model validation. J Membrane Sci 474:103–113.  https://doi.org/10.1016/j.memsci.2014.09.040 CrossRefGoogle Scholar
  117. 117.
    Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25.  https://doi.org/10.1016/j.jiec.2014.03.022 CrossRefGoogle Scholar
  118. 118.
    Chen L, Xie H, Yu W (2011) Functionalization methods of carbon nanotubes and its applications. Carbon nanotubes application on electron devices. IntechOpen, Shanghai.  https://doi.org/10.5772/18547 CrossRefGoogle Scholar
  119. 119.
    Park CH, Tocci E, Fontananova E, Bahattab MA, Aljlil SA, Drioli E (2016) Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: mesoscale simulation and experimental approach for optimizing dispersion. J Membrane Sci 514:195–209.  https://doi.org/10.1016/j.memsci.2016.04.011 CrossRefGoogle Scholar
  120. 120.
    Massoumi B, Ramezani M, Jaymand M, Ahmadinejad M (2015) Multi-walled carbon nanotubes-g-[poly(ethylene glycol)-b-poly(ε-caprolactone)]: synthesis, characterization, and properties. J Polym Res 22(11):1–10.  https://doi.org/10.1007/s10965-015-0863-7 CrossRefGoogle Scholar
  121. 121.
    Golzar K, Modarress H, Amjad-Iranagh S (2017) Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. J Mol Model 23(9):1–25.  https://doi.org/10.1007/s00894-017-3436-3 CrossRefGoogle Scholar
  122. 122.
    Lee J (2009) A scattered data approximation tool to map carbon nanotube dispersion to the processing parameters in polymer nanocomposites. Rice UniversityGoogle Scholar
  123. 123.
    Chen J, Dyer MJ, Yu MF (2001) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc 123(25):6201–6202.  https://doi.org/10.1021/ja015766t CrossRefPubMedGoogle Scholar
  124. 124.
    Wang S, Liang Z, Wang B, Zhang C, Rahman Z (2007) Precise cutting of single-walled carbon nanotubes. Nanotechnology 18(5):055301.  https://doi.org/10.1088/0957-4484/18/5/055301 CrossRefGoogle Scholar
  125. 125.
    Shuba MV, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Ksenevich VK, Niaura G, Seliuta D, Kasalynas I, Valusis G (2012) Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids. Nanotechnology 23(49):495714.  https://doi.org/10.1088/0957-4484/23/49/495714 CrossRefPubMedGoogle Scholar
  126. 126.
    Pabby AK, Rizvi SSH, Requena AMS (2008) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  127. 127.
    Nagy E (2012) Basic equations of the mass transport through a membrane layer1st edn. Elsevier, LondonGoogle Scholar
  128. 128.
    De Meis D (2017) Gas transport through porous membrane. ENEA.  https://doi.org/10.13140/RG.2.2.25450.72641
  129. 129.
    Baker RW (2012) Membrane technology and applications3rd edn. Wiley-Blackwell, Oxford.  https://doi.org/10.1002/9781118359686 CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.School of Engineering and Science, Department of Chemical EngineeringCurtin University MalaysiaMiriMalaysia

Personalised recommendations