Advertisement

Journal of Polymer Research

, 27:34 | Cite as

Modified polypropylene/ thermoplastic polyurethane blends with maleic-anhydride grafted polypropylene: blending morphology and mechanical behaviors

  • Ting An Lin
  • Mei-Chen Lin
  • Jan-Yi Lin
  • Jia-Horng Lin
  • Yu-Chun Chuang
  • Ching-Wen LouEmail author
ORIGINAL PAPER
  • 23 Downloads

Abstract

This study proposes using polypropylene grafted maleic anhydride (MA) to improve the interfacial compatibility between modified impact-resistant polypropylene (MPP) and thermoplastic polyurethane (TPU). The melt-compounding and injection method is used to prepare MPP/TPU/MA blends. The blending morphology, tensile behavior, flexural behavior, and impact behavior of blends are evaluated in terms of the content of TPU and MA. The SEM images show the positive influence of using MA on the compatibility between MPP and TPU, and only 1 wt% of it can efficiently decrease the difference in polarity and interfacial tension. As MA is an additional reinforcement, 100 wt% of the blends are made of MPP and TPU, indicating that more TPU means less MPP. When the blends are made of more TPU, the tensile strength of the control group (pure MPP/TPU blends) shows a decreasing trend. By contrast, MPP80/TPU20/MA3 blends have a tensile strength of 28 MPa and Young’s modulus of 927 MPa, while MPP90/TPU10/MA1 blends have the optimal flexural stress of 53.99 MPa and flexural modulus of 1493.61 MPa. Exception for MPP60/TPU40/MA1 blends, all the other experimental groups have greater impact strength as a result of using 1 wt% of MA. Specifically, MPP90/TPU10/MA1 blends have the maximum impact strength of 105.28 J/ m. The addition of MA has proven to efficiently improve the compatibility and interfacial adhesion between MPP and TPU, thereby forming an extraordinary bonding with a stabilized phase where a stress can be efficiently distributed. This study expects to design and adjust the performance of the composite blends according to the test results of SEM observation, tensile strength test, and impact strength test.

Keywords

Melt extrusion method Impact-resistant polypropylene Thermoplastic polyurethane Maleic anhydride Blending morphology Mechanical properties Impact resistance 

Notes

Acknowledgements

The authors would especially like to thank Ministry of Science and Technology of Taiwan, for financially supporting this research under Contract MOST 107-2632-E-035-001 and MOST 107-2221-E-035-052-MY2.

References

  1. 1.
    Xiao JM, Chen YA (2015) New micro-structure designs of a polypropylene (PP) composite with improved impact property. Mater Lett 152:210–212CrossRefGoogle Scholar
  2. 2.
    Liao J, Brosse N, Pizzi A, Hoppe S, Xi X, Zhou X (2019) Polypropylene blend with polyphenols through dynamic vulcanization: mechanical, rheological, crystalline, thermal, and UV protective property. Polymers (Basel) 11(7)CrossRefGoogle Scholar
  3. 3.
    Su B, Zhou YG, Dong BB, Yan C (2019) Effect of compatibility on the foaming behavior of injection molded polypropylene and polycarbonate blend parts. Polymers (Basel) 11(2)CrossRefGoogle Scholar
  4. 4.
    Guan Y, Wang S, Zheng A, Xiao H (2003) Crystallization behaviors of polypropylene and functional polypropylene. J Appl Polym Sci 88(4):872–877CrossRefGoogle Scholar
  5. 5.
    Chow WS (2019) Polypropylene blends: properties control by design. In: Karger-Kocsis J, Bárány T (eds) Polypropylene handbook: morphology, blends and composites. Springer International Publishing, Cham, pp 419–480CrossRefGoogle Scholar
  6. 6.
    Li TT, Chen AP, Hwang PW, Pan YJ, Hsing WH, Lou CW, Chen YS, Lin JH (2018) Synergistic effects of micro−/nano-fillers on conductive and electromagnetic shielding properties of polypropylene nanocomposites. Mater Manuf Process 33(2):149–155CrossRefGoogle Scholar
  7. 7.
    Li Y, Li Y, Han CY, Yu YC, Xiao LG (2019) Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers. Polym Bull 76(6):2851–2866CrossRefGoogle Scholar
  8. 8.
    Svab I, Pustak A, Denac M, Sever Skapin A, Leskovac M, Musil V, Smit I (2018) Polypropylene blends with m-EPR copolymers: mechanical and rheological properties. Acta Chim Slov 65(2):344–353CrossRefGoogle Scholar
  9. 9.
    Ecaterina Matei MR, Andras ÁA, Predescu AM, Pantilimon C, Pica A, Predescu C (2017) Recycled polypropylene improved with thermoplastic elastomers. Int J Polym Sci 2017:1–10CrossRefGoogle Scholar
  10. 10.
    Wang F, Wang J, He L, Nan F, Li HM, Jiang M, Wang JR, Yi JJ, Wang KF, Huang QG, Yang WT (2017) Preparation and characterization of nano-scaled composites of elastomeric ter-polypropylene blended with iPP through in-situ polymerization strategy. Mater Lett 209:64–67CrossRefGoogle Scholar
  11. 11.
    Vakees E, Suresh J, Kayalvizhi M, Arun A, Karthik S (2016) Thermoplastic elastomers based on functionalized polystyrene with crystallizable diamide segment: synthesis and characterization. Adv Polym Technol 35(4):402–410CrossRefGoogle Scholar
  12. 12.
    Lu YL, Yang Y, Xiao P, Feng YX, Liu L, Tian M, Li XL, Zhang LQ (2017) Effect of interfacial enhancing on morphology, mechanical, and rheological properties of polypropylene-ground tire rubber powder blends. J Appl Polym Sci 134(40)CrossRefGoogle Scholar
  13. 13.
    Wang Z, Zhang T, Zhang Z, Ge Z, Luo Y (2016) Effect of hard-segment content on rheological properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomers. Polym Bull 73(11):3095–3104CrossRefGoogle Scholar
  14. 14.
    Naderi G, Ghoreishy MHR, Moradi M (2016) Effect of modified single-wall carbon nanotubes on mechanical and morphological properties of thermoplastic elastomer nanocomposites based on (polyamide 6)/(acrylonitrile butadiene rubber). J Vinyl Addit Technol 22(3):336–341CrossRefGoogle Scholar
  15. 15.
    Kim TK, Kim BK, Lee SY, Cho YL, Kim MS, Jeong HM (2010) Thermoplastic polyurethane elastomer/thermoplastic polyolefin elastomer blends compatibilized with a polyolefinic segment in TPU. Macromol Res 18(2):177–184CrossRefGoogle Scholar
  16. 16.
    Bovas BC, Karunamoorthy L, Chuan FB (2018) Effect of extrusion process melt temperature on polyurethane catheter surfaces. Mater Manuf Process 33(2):180–185CrossRefGoogle Scholar
  17. 17.
    Kunchimon SZ, Tausif M, Goswami P, Cheung V (2019) Polyamide 6 and thermoplastic polyurethane recycled hybrid Fibres via twin-screw melt extrusion. J Polym Res 26(7)Google Scholar
  18. 18.
    Bulatovic VO, Mihaljevic A, Bajsic EG, Holjevac TG (2017) Morphology and thermal behavior of TPU/PP blends modified with maleic anhydride grafted SEBS-g-MA block copolymer. Int Polym Process 32(1):102–111CrossRefGoogle Scholar
  19. 19.
    Doroudiani S, Park CB, Kortschot MT (1998) Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends. Polym Eng Sci 38(7):1205–1215CrossRefGoogle Scholar
  20. 20.
    Bajsic EG, Filipan V, Bulatovic VO, Mandic V (2017) The influence of filler treatment on the mechanical properties and phase behavior of thermoplastic polyurethane/polypropylene blends. Polym Bull 74(8):2939–2955CrossRefGoogle Scholar
  21. 21.
    Hato MJ, Motaung TE, Choi HJ, Scriba M, Khumalo VM, Malwela T (2017) Effect of organoclay on the properties of maleic anhydride-grafted polypropylene and poly(methyl methacrylate) blend. Polym Compos 38(3):431–440CrossRefGoogle Scholar
  22. 22.
    La Mantia FP, Ceraulo M, Mistretta MC, Botta L, Morreale M (2018) Compatibilization of polypropylene/polyamide 6 blend fibers using photo-oxidized polypropylene. Materials (Basel) 12(1)Google Scholar
  23. 23.
    Petra Potschke KW, Fritsche H, Stutz H (1997) Morphology and properties of blends with different thermoplastic polyurethanes and polyolefines. J Appl Polym Sci 64(4):749–762CrossRefGoogle Scholar
  24. 24.
    Bharathi Mariappan VR, Jaisankar SN (2014) Morphology and electrical conductivity of compatibilized thermoplastic polyurethane/single-walled carbon nanotube composites. Procedia Eng 93:59–65CrossRefGoogle Scholar
  25. 25.
    Wang Y, Mi D, Delva L, Cardon L, Zhang J, Ragaert K (2018) New approach to optimize mechanical properties of the immiscible polypropylene/poly (ethylene terephthalate) blend: effect of shish-kebab and core-shell structure. Polymers (Basel) 10(10)CrossRefGoogle Scholar
  26. 26.
    Lu QW, Macosko CW, Horrion J (2003) Compatibilized blends of thermoplastic polyurethane (TPU) and polypropylene. Macromol Symp 198:221–232CrossRefGoogle Scholar
  27. 27.
    Monika PU, Chand N, Kumar V (2014) Effect of poly lactic acid on morphological, mechanical, and optical properties of compatibilized polypropylene and high density polyethylene blend. Compos Interface 21(2):133–141CrossRefGoogle Scholar
  28. 28.
    Jeong JO, Lim YM, Park JS (2017) Improving thermal stability and mechanical performance of polypropylene/polyurethane blend prepared by radiation-based techniques. Eur Polym J 94:366–375CrossRefGoogle Scholar
  29. 29.
    Kannan M, Bhagawan SS, Thomas S, Joseph K (2014) Studies on electrical properties of nanoclay filled thermoplastic polyurethane/polypropylene blends. Polym Compos 35(9):1671–1682CrossRefGoogle Scholar
  30. 30.
    Aranburu N, Eguiazabal JI (2015) Improved mechanical properties of compatibilized polypropylene/polyamide-12 blends. Int J Polym SciGoogle Scholar
  31. 31.
    dos Anjos EGR, Backes EH, Marini J, Pessan LA, Montagna LS, Passador FR (2019) Effect of LLDPE-g-MA on the rheological, thermal, mechanical properties and morphological characteristic of PA6/LLDPE blends. J Polym Res 26(6)Google Scholar
  32. 32.
    Jia S, Zhu Y, Wang Z, Chen L, Fu L (2015) Influences of PP-g-MA on the surface free energy, morphologies and mechanical properties of thermoplastic polyurethane / polypropylene blends. J Polym Res 22(8)Google Scholar
  33. 33.
    Song PA, Liu LN, Huang GB, Yu YM, Guo QP (2013) Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C-60@ graphene nanocarbon hybrid. Nanotechnology 24(50)CrossRefGoogle Scholar
  34. 34.
    Bajsic EG, Smit I, Leskovac M (2007) Blends of thermoplastic polyurethane and polypropylene. I Mechanical and phase behavior. J Appl Polym Sci 104(6):3980–3985CrossRefGoogle Scholar
  35. 35.
    Luo JS, Xu BP, Yu HW, Du YX, Feng YH (2015) Thermoplastic polyurethane/polypropylene blends in a co-rotating non-twin screws extruder. Fiber Polym 16(1):95–104CrossRefGoogle Scholar
  36. 36.
    Yueyun Zhou LL, Liu W, Zeng G, Chen Y (2015) Preparation and characteristic of PC/PLA/TPU blends by reactive extrusion. Adv Mater Sci Eng 2015:1–10Google Scholar
  37. 37.
    Wang JS, Chen XD, Zhang NQ, Rong MZ (2006) Polyurethane/polyolefin blends: morphology, compatibilization and mechanical properties. Polym Polym Compos 14(1):1–11Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite MaterialsFeng Chia UniversityTaichung CityTaiwan
  2. 2.Fujian Key Laboratory of Novel Functional Textile Fibers and MaterialsMinjiang UniversityFuzhouChina
  3. 3.Innovation Platform of Intelligent and Energy-Saving Textiles, School of TextilesTianjin Polytechnic UniversityTianjinChina
  4. 4.College of Textile and ClothingQingdao UniversityQingdaoChina
  5. 5.Department of Fashion DesignAsia UniversityTaichungTaiwan
  6. 6.School of Chinese MedicineChina Medical UniversityTaichungTaiwan
  7. 7.Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite MaterialsTianjin Polytechnic UniversityTianjinChina
  8. 8.Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan
  9. 9.Department of Bioinformatics and Medical EngineeringAsia UniversityTaichungTaiwan

Personalised recommendations