Advertisement

Journal of Polymer Research

, 26:277 | Cite as

Effect of chemical structure of hydrazide compounds on nucleation effect in isotactic polypropylene

  • Yue-Fei ZhangEmail author
  • Jing-Jing Mao
ORIGINAL PAPER
  • 20 Downloads

Abstract

A series of hydrazide compounds were synthesized and employed as nucleating agents for isotactic polypropylene (iPP). The effect of different structures of hydrazide compounds on the crystallization and melting behaviour of iPP was studied by differential scanning calorimetry (DSC). The results demonstrate that almost all nucleating agents are α-nucleating agents, some of which are highly efficient nucleating agents. In the case of the same substituent, the greater the number of hydrazide groups, the better the nucleation effect. The crystallization peak temperature (Tc) of iPP nucleated with dihydrazide is 3–4 °C higher than that of monohydrazide. When the substituent of the dihydrazide compound is hydrogen, ethyl and nonyl, their nucleating ability is relatively weak, but in the state of phenyl and cyclohexyl substitution, the Tc of iPP nucleated with dihydrazide nucleating agent is 8.5 °C than pure iPP. When the intermediate group of the dihydrazide compound is a long-chain alkyl, a phenyl, a cyclohexyl, and a naphthyl group, the phenyl group and the cyclohexyl group still exhibit an excellent effect, the Tc of nucleated iPP is raised by about 10 °C.

Keywords

Isotactic polypropylene Hydrazide compounds Crystallization peak temperature 

Notes

Acknowledgments

This work was financially supported by Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294).

References

  1. 1.
    Zhao SC, Yu X, Gong HZ, Shi YQ, Zhou S (2015) The crystallization behavior of isotactic polypropylene induced by a novel anti-nucleating agent and its inhibition mechanism of nucleation. Ind Eng Chem Res 54(31):7650–7657CrossRefGoogle Scholar
  2. 2.
    Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW (2003) The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene) sorbitol: phase behavior, nucleation, and optical properties. Macromolecules 36(14):5150–5156CrossRefGoogle Scholar
  3. 3.
    Zhang YF (2008) Comparison of nucleation effects of organic phosphorous and sorbitol derivative nucleating agents in isotactic polypropylene. J Macromol Sci B 47(6):1188–1196CrossRefGoogle Scholar
  4. 4.
    Libster D, Aserin A, Garti N (2010) Advanced nucleating agents for polypropylene. Polym Adv Technol 18(9):685–695CrossRefGoogle Scholar
  5. 5.
    Zhang YF, Hou HH, Guo LH (2018) Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim 131(2):1483–1490CrossRefGoogle Scholar
  6. 6.
    Yu YS, Xiong BJ, Zeng FXY, Xu RZ, Yang F, Kang J, Xiang M, Li L, Sheng XY, Hao ZH (2018) Influences of compression on the mechanical behavior and electrochemical performances of separators for lithium ion batteries. Ind Eng Chem Res 57(50):17142–17151CrossRefGoogle Scholar
  7. 7.
    Xiong BJ, Chen R, Zeng FXY, Kang J, Men YF (2018) Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: in-situ ultra-small angle X-ray scattering study. J Membr Sci 545:213–220CrossRefGoogle Scholar
  8. 8.
    Wang X, Tzoganakis C, Rempel GL (1996) Chemical modification of polypropylene with peroxide/pentaerythritol triacrylate by reactive extrusion. J Appl Polym Sci 61(8):1395–1404CrossRefGoogle Scholar
  9. 9.
    John MJ, Anandjiwala RD (2009) Chemical modification of flax reinforced polypropylene composites. Compos Part A-Appl S 40(4):442–448CrossRefGoogle Scholar
  10. 10.
    Ismail SH, Bakar AA (2006) Effects of chemical modification of paper sludge filled polypropylene, (PP)/ethylene propylene diene terpolymer (EPDM) composites. J Reinf Plast Compos 25(1):43–58CrossRefGoogle Scholar
  11. 11.
    Mahlberg R, Paajanen L, Nurmi A, Kivistö A, Koskela K, Rowell RM (2001) Effect of chemical modification of wood on the mechanical and adhesion properties of wood fiber/polypropylene fiber and polypropylene/veneer composites. Holz Roh Werkst 59(5):319–326CrossRefGoogle Scholar
  12. 12.
    Son TW, Lim SK, Chang CM, Kim SS, Cho IS (2010) Physical modification of polypropylene: preparation of fibres dyeable with disperse dyes. Color Technol 115(12):366–369CrossRefGoogle Scholar
  13. 13.
    Son TW, Lim SK, Lee DW, Lee EW (2015) Physical modification of polypropylene. III. Novel morphology of polypropylene and poly (ethylene-co-vinyl alcohol) with epoxy blend fibers. J Appl Polym Sci 73(6):1049–1057CrossRefGoogle Scholar
  14. 14.
    Yu YS, Xu RZ, Chen JY, Kang J, Xiang M, Li YJ, Li L, Sheng XY (2019) Ordered structure effects on β-nucleated isotactic polypropylene/graphene oxide composites with different thermal histories. RSC Adv 9(34):19630–19640CrossRefGoogle Scholar
  15. 15.
    Zhang YF, Chen H, Liu BB, Gu YH, Li XX (2014) Isothermal and non-isothermal crystallization of isotactic polypropylene nucleated with 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide). Thermochim Acta 590:226–231CrossRefGoogle Scholar
  16. 16.
    Zhang YF, Chen H (2014) Effects of nucleating agent 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide) on properties and crystallization behaviors of isotatic polypropylene. Colloid Polym Sci 292(2):493–498CrossRefGoogle Scholar
  17. 17.
    Zhao SC, Cai Z, Xin Z (2008) A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49(11):2745–2754CrossRefGoogle Scholar
  18. 18.
    Chen L, Yang YD, Xin Z, Qin W, Zhou S, Zhao SC (2019) Increased nucleation efficiency of an in situ-formed β-nucleating agent for impact polypropylene copolymer. J Polym Res 26(10):245CrossRefGoogle Scholar
  19. 19.
    Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27(10):2557–2579CrossRefGoogle Scholar
  20. 20.
    Lotz B (2014) A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules 47(21):7612–7624CrossRefGoogle Scholar
  21. 21.
    Zheng H, Zeng FXY, Chen ZF, Kang J, Chen JY, Cao Y, Xiang M (2017) Exploring the roles of molecular structure on the β-crystallization of polypropylene random copolymer. J Polym Res 24(12):225CrossRefGoogle Scholar
  22. 22.
    Ghugare SV, Govindaiah P, Avadhani CV (2009) Polypropylene-organoclay nanocomposites containing nucleating agents. Polym Bull 63(6):897–909CrossRefGoogle Scholar
  23. 23.
    Zhao SC, Liu KH, Zhou S, Shi YQ, Xin Z (2017) A novel self-dispersed β nucleating agent for isotactic polypropylene and its unique nucleation behavior and mechanism. Polymer 132:69–78CrossRefGoogle Scholar
  24. 24.
    Abraham F, Ganzleben S, Hanft D, Smith P, Schmidt HW (2010) Synthesis and structure–efficiency relations of 1,3,5-benzenetrisamides as nucleating agents and clarifiers for isotactic poly(propylene). Macromol Chem Phys 211(2):171–181CrossRefGoogle Scholar
  25. 25.
    Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS (2013) Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta 553:40–48CrossRefGoogle Scholar
  26. 26.
    Li CH, Luo SS, Wang JF, Wu H, Guo SY, Zhang X (2017) Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator. Biomacromolecules 18(4):1440–1448CrossRefGoogle Scholar
  27. 27.
    Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2010) Physical and mechanical properties of poly(L-lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci 103(1):244–250CrossRefGoogle Scholar
  28. 28.
    Cai YH, Yan SF, Yin JB, Fan YQ, Chen XS (2011) Crystallization behavior of biodegradable poly (L-lactic acid) filled with a powerful nucleating agent: N,N′-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci 121(3):1408–1416CrossRefGoogle Scholar
  29. 29.
    Zhou PZ, Zhang YF, Lin XF (2019) Crystallization kinetics of isotactic polypropylene nucleated with octamethylenedicarboxylic dibenzoylhydrazide under isothermal and non-isothermal conditions. J Therm Anal Calorim 136(2):749–757CrossRefGoogle Scholar
  30. 30.
    Zhang YF, Zhou PZ, Mao JJ, Liu N (2019) Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene. Polym Bull 76(4):1685–1696CrossRefGoogle Scholar
  31. 31.
    Wilsens CHRM, Hawke LGD, Troisi EM, Hermida-Merino D, de KortG LN, Saralidze K, Peters GWM, Rastogi S (2018) Effect of self-assembly of oxalamide based organic compounds on melt behavior, nucleation, and crystallization of isotactic polypropylene. Macromolecules 51(13):4882–4892CrossRefGoogle Scholar
  32. 32.
    Yang Y, Liang R, Chen Y, Zhang C, Zhang R, Wang X, Kong R, Chen Q (2017) Using a self-assemblable nucleating agent to tailor crystallization behavior, crystal morphology, polymorphic crystalline structure, and biodegradability of poly(1,4-butylene adipate). Ind Eng Chem Res 56(28):7910–7919CrossRefGoogle Scholar
  33. 33.
    Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Nucleating agent for poly(L-lactic acid)—an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103(1):198–203CrossRefGoogle Scholar
  34. 34.
    Wang KZ, Li XG, Wang GJ, Dai YQ, Zhang JJ, Zhang HF,Wang R, Mao CX , Li XY, Gong YL, Liu FY, Wang K. Preparation method for improving yield of fat dicarboxylic dihydrazide nucleating agent, CN Patent, CN 102976969 AGoogle Scholar
  35. 35.
    Hanna LA, Hendra PJ, Maddams W, Willis HA, Zichy V, Cudby MEA (1988) Vibrational spectroscopic study of structural changes in isotactic polypropylene below the melting point. Polymer 29(10):1843–1847CrossRefGoogle Scholar
  36. 36.
    Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M (2007) Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers. Polymer 48(1):401–408CrossRefGoogle Scholar
  37. 37.
    Xing Q, Li RB, Dong X, Luo FL, Kuang X, Wang DJ, Zhang LY (2015) Enhanced crystallization rate of poly(L-lactide) mediated by a hydrazide compound: nucleating mechanism study. Macromol Chem Phys 216(10):1134–1145CrossRefGoogle Scholar
  38. 38.
    Zhao SM, Chen FH, Huang YJ, Dong JY, Han CC (2014) Crystallization behaviors in the isotactic polypropylene/graphene composites. Polymer 55(16):4125–4135CrossRefGoogle Scholar
  39. 39.
    Yang S, Li Y, Liang YY, Wang WJ, Luo Y, Xu JZ, Li ZM (2016) Graphene oxide induced isotactic polypropylene crystallization: role of structural reduction. RSC Adv 6(28):23930–22394CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.School of Chemistry and Food EngineeringChangsha University of Science & TechnologyChangshaPeople’s Republic of China

Personalised recommendations