Journal of Polymer Research

, 26:264 | Cite as

Preparation and characterization of h-BN nanosheets/chitosan microspheres

  • Jiewei Chen
  • Jingqi ShangEmail author
  • Feng Xue
  • Qiushi Wei
  • Ning Xu
  • Enyong DingEmail author


This article reports on the high-efficiency preparation of few layers h-BN nanosheets (BNNSs) by a high-pressure homogenizer. Then, the BNNSs/chitosan microspheres (BN-CS-M) are finally prepared by mixing BNNSs with chitosan under alkaline conditions. The BNNSs dispersion is investigated by UV-vis spectrophotometer and Transmission Electron Microscopy. In addition, we use Scanning Electron Microscopy and Laser particle size analyzer to characterize the microscopic and macroscopic morphology of BN-CS-M composites. Raman spectroscopy and Specific surface area testing are also used to explore the intrinsic properties of BN-CS-M. Thermal gravimetric analysis shows that composites with high content of BNNSs possess higher thermal stability. The results show that BNNSs is dispersed in the network of chitosan microspheres, and the higher the rate of centrifugation, the fewer BNNSs dispersed in the microspheres. The chitosan microspheres composite with pore diameters in the range of 1.7–2.9 nm belongs to the type IV adsorption curve.


Polymers Nanocomposites Microstructure Nanoparticles 



  1. 1.
    Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6):404–409CrossRefGoogle Scholar
  2. 2.
    Song L, Ci L, Lu H et al (2010) Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett 10(8):3209–3215CrossRefGoogle Scholar
  3. 3.
    Brugger T, Ma HF, Iannuzzi M et al (2010) Nanotexture Switching of Single-Layer Hexagonal Boron Nitride on Rhodium by Intercalation of Hydrogen Atoms. Angew Chem Int Ed 49(35):6120–6124CrossRefGoogle Scholar
  4. 4.
    Golberg D, Bando Y, Huang Y et al (2010) Boron Nitride Nanotubes and Nanosheets. ACS Nano 4(6):2979–2993CrossRefGoogle Scholar
  5. 5.
    Zhi C, Bando Y, Tang C et al (2009) Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Adv Mater 21(28):2889–2893CrossRefGoogle Scholar
  6. 6.
    Jin C, Lin F, Suenaga K et al (2009) Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments. Phys Rev Lett 102(19):19505CrossRefGoogle Scholar
  7. 7.
    Liu Z, Gong Y, Zhou W et al (2013) Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun 4:2541CrossRefGoogle Scholar
  8. 8.
    Mukhopadhyay TK, Datta A (2016) Deciphering the Role of Solvents in the Liquid Phase Exfoliation of Hexagonal Boron Nitride: A Molecular Dynamics Simulation Study. J Phys Chem C 121(1):811–822CrossRefGoogle Scholar
  9. 9.
    Guardia L, Fernandez-Merino MJ, Paredes JI et al (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49(5):1653–1662CrossRefGoogle Scholar
  10. 10.
    Shang JQ, Xue F, Ding EY (2015) Efficient exfoliation of molybdenum disulphide nanosheets by a high-pressure homogeniser. Micro Nano Lett 10(10):589–591CrossRefGoogle Scholar
  11. 11.
    Shang JQ, Xue F, Fan CJ et al (2016) Preparation of few layers hexagonal boron nitride nanosheets via high-pressure homogenization. Mater Lett:181144–181147Google Scholar
  12. 12.
    Shang J, Xue F, Ding E (2015) The facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization. Chem Commun 51(87):15811–15814CrossRefGoogle Scholar
  13. 13.
    Shen H, Guo J, Wang H et al (2015) Bioinspired Modification of h-BN for High Thermal Conductive Composite Films with Aligned Structure. ACS Appl Mater Interfaces 7(10):5701–5708CrossRefGoogle Scholar
  14. 14.
    Pan C, Kou KC, Jia Q et al (2017) Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Composites Part B 111:83–90CrossRefGoogle Scholar
  15. 15.
    Deshmukh K, Ahamed MB, Sadasivuni KK et al (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24(2):27CrossRefGoogle Scholar
  16. 16.
    Gao C, Lu H, Ni H et al (2018) Structure, thermal conductive, dielectric and electrical insulating properties of UHMWPE/BN composites with a segregated structure. J Polym Res 25(1):6CrossRefGoogle Scholar
  17. 17.
    Kumar M (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  18. 18.
    Rabea EI, Badawy ME-T, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRefGoogle Scholar
  19. 19.
    Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34CrossRefGoogle Scholar
  20. 20.
    Madihally SV, Matthew HWJB (1999) Porous chitosan scaffolds for tissue engineering. Biomater 20(12):1133–1142CrossRefGoogle Scholar
  21. 21.
    Suh J-KF, Matthew HWJB (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomater 21(24):2589–2598CrossRefGoogle Scholar
  22. 22.
    Guibal EJS, technology p (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74CrossRefGoogle Scholar
  23. 23.
    Narayanan A, Dhamodharan RJCp (2015) Super water-absorbing new material from chitosan, EDTA and urea. Carbohydr Polym 134:337–343CrossRefGoogle Scholar
  24. 24.
    Kobayashi R, Shibata MJJoPR (2019) Preparation and properties of nanocomposites composed of a water-soluble nylon and chitin nanofibers. J Polym Res 26(7):168Google Scholar
  25. 25.
    Zhang S, Ma B, Wang S et al (2018) Mass-production of fluorescent chitosan/graphene oxide hybrid microspheres for in vitro 3D expansion of human umbilical cord mesenchymal stem cells. Chem Eng J 331:675–684CrossRefGoogle Scholar
  26. 26.
    Kisku SK, Swain SKJJotACS (2012) Synthesis and characterization of chitosan/boron nitride composites. J Am Ceram Soc 95(9):2753–2757CrossRefGoogle Scholar
  27. 27.
    Ferreira T, Hollanda L, Lancellotti M et al (2015) Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J Biomed Mater Res Part A 103(6):2176–2185CrossRefGoogle Scholar
  28. 28.
    Kalay S, Yilmaz Z, Sen O et al (2015) Synthesis of boron nitride nanotubes and their applications. Beilstein J Nanotechnol 6(1):84–102CrossRefGoogle Scholar
  29. 29.
    Liang X, Duan J, Xu Q et al (2017) Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater. Chem Eng J 317:766–776CrossRefGoogle Scholar
  30. 30.
    Yang S-Y, Huang Y-F, Lei J et al (2018) Enhanced thermal conductivity of polyethylene/boron nitride multilayer sheets through annealing. Composites Part A 107:135–143CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations