Skip to main content
Log in

Increased nucleation efficiency of an in situ–formed β-nucleating agent for impact polypropylene copolymer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study we generated zinc adipate (ZnAA) in situ [referred to herein as “ZnAA(IS)”] through the addition of its reaction precursors—adipic acid and zinc oxide—during the extrusion of impact polypropylene copolymer (IPC); we then investigated its nucleation performance as β nucleating agent using differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction, and tests of mechanical properties. When compared with the pre-addition of ZnAA, the generation of ZnAA(IS) in situ resulted in higher nucleation effect toward the IPC, due to the smaller average particle size and more uniform dispersion of ZnAA(IS). In particular, compared with the neat IPC, the impact strength of the IPC prepared using 0.1 wt% of ZnAA(IS) increased by 103% at low temperature (−20 °C), whereas that of the IPC prepared with ZnAA increased by 38.9% under the same conditions. Moreover, when using Flash DSC to examine the crystallization behavior of the IPC under rapid cooling, we observed that, upon increasing the cooling rate, two crystalline peaks appeared for the neat and nucleated IPCs, presumably because of the crystallization of both the PP and PE homopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Y, Yang S, Yang H, Zhang M, Zhang Q, Li Z (2016) Toughness reinforcement in carbon nanotube-filled high impact polypropylene copolymer with beta-nucleating agent. Ind Eng Chem Res 55(32):8733–8742. https://doi.org/10.1021/acs.iecr.6b01226

    Article  CAS  Google Scholar 

  2. Qiu B, Chen F, Lin Y, Shangguan Y, Zheng Q (2014) Control of multilayered core-shell dispersed particles in HPP/EPR/EbP blends and its influences on crystallization and dynamic mechanical behavior. Polymer 55(23):6176–6185. https://doi.org/10.1016/j.polymer.2014.09.060

    Article  CAS  Google Scholar 

  3. Song S, Feng J, Wu P, Yang Y (2009) Shear-enhanced crystallization in impact-resistant polypropylene copolymer: influence of compositional heterogeneity and phase structure. Macromolecules 42(18):7067–7078. https://doi.org/10.1021/ma9004764

    Article  CAS  Google Scholar 

  4. Tan HS, Li L, Chen ZN, Song YH, Zheng Q (2005) Phase morphology and impact toughness of impact polypropylene copolymer. Polymer 46(10):3522–3527. https://doi.org/10.1016/j.polylmer.2005.02.088

    Article  CAS  Google Scholar 

  5. Zhang C, Shangguan Y, Chen R, Wu Y, Chen F, Zheng Q, Hu G (2010) Morphology, microstructure and compatibility of impact polypropylene copolymer. Polymer 51(21):4969–4977. https://doi.org/10.1016/j.polymer.2010.08.021

    Article  CAS  Google Scholar 

  6. Motsoeneng TS, Luyt AS, van Reenen AJ (2014) Investigation of the crystalline phase morphology of a beta-nucleated impact polypropylene copolymer. J Appl Polym Sci 131(4). https://doi.org/10.1002/app.39923

    Google Scholar 

  7. Xiaoxi L, Haiyan W, Jingwei C, Jinghui Y, Ting H, Nan Z, Yong W (2012) Nonisothermal crystallization and multiple melting behaviors of beta-nucleated impact-resistant polypropylene copolymer. J Appl Polym Sci 126(3):1031–1043. https://doi.org/10.1002/app.36633

    Article  CAS  Google Scholar 

  8. Mani MR, Chellaswamy R, Marathe YN, Pillai VK (2016) New understanding on regulating the crystallization and morphology of the beta-polymorph of isotactic polypropylene based on carboxylate-Alumoxane nucleating agents. Macromolecules 49(6):2197–2205. https://doi.org/10.1021/acs.macromol.5b02466

    Article  CAS  Google Scholar 

  9. Wang L, Hikima Y, Ishihara S, Ohshima M (2017) Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents. Polymer 128:119–127. https://doi.org/10.1016/j.polymer.2017.09.025

    Article  CAS  Google Scholar 

  10. Cheng D, Feng J, Yi J (2012) Influence of nucleation on the brittle-ductile transition temperature of impact-resistant polypropylene copolymer: from the sight of phase morphology. J Appl Polym Sci 123(3):1784–1792. https://doi.org/10.1002/app.34639

    Article  CAS  Google Scholar 

  11. Liu Y-M, Tong Z-Z, Xu J-T, Fu Z-S, Fan Z-Q (2014) A highly efficient beta-nucleating agent for impact-resistant polypropylene copolymer. J Appl Polym Sci 131(18). https://doi.org/10.1002/app.40753

    Google Scholar 

  12. Dou G, Dou Q (2015) Crystallization kinetics, spherulitic morphology, mechanical properties and heat resistance of beta-nucleated impact-resistant propylene-ethylene copolymer. Thermochim Acta 614:21–32. https://doi.org/10.1016/j.tca.2015.06.011

    Article  CAS  Google Scholar 

  13. Qiu B, Chen F, Shangguan Y, Lin Y, Zheng Q, Wang X (2016) Toughening mechanism in impact polypropylene copolymer containing a beta-nucleating agent. RSC Adv 6(28):23117–23125. https://doi.org/10.1039/c6ra01046f

    Article  CAS  Google Scholar 

  14. Lu Q, Dou Q (2008) β-Crystal formation of isotactic polypropylene induced by N, N’-dicyclohexylsuccinamide. J Polym Res 16(5):555–560. https://doi.org/10.1007/s10965-008-9259-2

    Article  CAS  Google Scholar 

  15. Ren X-Q, Zhang Y-F (2018) Effects of different metal salts of aliphatic dicarboxylic acids on the formation of β-crystalline form in isotactic polypropylene. J Therm Anal Calorim 137(2):563–573. https://doi.org/10.1007/s10973-018-7958-4

    Article  CAS  Google Scholar 

  16. Ren X-Q, Zhang Y-F, He J, Li Y (2018) Nucleation effect of adipic acid metal salts in isotactic polypropylene. J Therm Anal Calorim 135(6):3321–3328. https://doi.org/10.1007/s10973-018-7515-1

    Article  CAS  Google Scholar 

  17. Zhao S, Cai Z, Xin Z (2008) A highly active novel beta-nucleating agent for isotactic polypropylene. Polymer 49(11):2745–2754. https://doi.org/10.1016/j.polymer.2008.04.012

    Article  CAS  Google Scholar 

  18. Zhao S, Gong H, Yu X, Xin Z, Sun S, Zhou S, Shi Y (2016) A highly active and selective beta-nucleating agent for isotactic polypropylene and crystallization behavior of beta-nucleated isotactic polypropylene under rapid cooling. J Appl Polym Sci 133(32). https://doi.org/10.1002/app.43767

  19. Qin W, Xin Z, Pan C, Sun S, Jiang X, Zhao S (2019) In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene. Chem Eng J 358:1243–1252. https://doi.org/10.1016/j.cej.2018.10.108

    Article  CAS  Google Scholar 

  20. Zhang Y-F, Li D, Chen Q-J (2017) Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci 295(10):1973–1982. https://doi.org/10.1007/s00396-017-4176-8

    Article  CAS  Google Scholar 

  21. Yang Y, Xin Z, Zhao S, Shi Y, Zhou S, Zhou J, Ye C (2017) Nucleation effects of zinc adipate as β-nucleating agent in ethylene-propylene block copolymerized polypropylene. J Polym Res 24(9). https://doi.org/10.1007/s10965-017-1300-x

  22. Zhao S, Qin W, Xin Z, Zhou S, Gong H, Ni Y, Zhang K (2018) In situ generation of a self-dispersed beta-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer 151:84–91. https://doi.org/10.1016/j.polymer.2018.07.023

    Article  CAS  Google Scholar 

  23. Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Die Makromolekulare Chemie 75(1):134–158. https://doi.org/10.1002/macp.1964.020750113

    Article  Google Scholar 

  24. Tjong SC, Shen JS, Li RKY (1996) Mechanical behavior of injection molded β-crystalline phase polypropylene. Polym Eng Sci 36(1):100–105. https://doi.org/10.1002/pen.10390

    Article  CAS  Google Scholar 

  25. Yi X, Chen C, Zhong G-J, Xu L, Tang J-H, Ji X, Hsiao BS, Li Z-M (2011) Suppressing the skin–Core structure of injection-molded isotactic polypropylene via combination of an in situ Microfibrillar network and an interfacial Compatibilizer. J Phys Chem B 115(23):7497–7504. https://doi.org/10.1021/jp1118162

    Article  CAS  PubMed  Google Scholar 

  26. Yu X, Wu H, Li J, Guo S, Qiu J (2009) Structure and property of injection-molded polypropylene along the flow direction. Polym Eng Sci 49(4):703–712. https://doi.org/10.1002/pen.21302

    Article  CAS  Google Scholar 

  27. Luo F, Wang K, Ning N, Geng C, Deng H, Chen F, Fu Q, Qian Y, Zheng D (2011) Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene. Polym Adv Technol 22(12):2044–2054. https://doi.org/10.1002/pat.1718

    Article  CAS  Google Scholar 

  28. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27(10):2557–2579. https://doi.org/10.1007/bf00540671

    Article  CAS  Google Scholar 

  29. Yuan Q, Jiang W, An L (2004) Study of β–α recrystallization of the polypropylene. Colloid Polym Sci 282(11):1236–1241. https://doi.org/10.1007/s00396-004-1063-x

    Article  CAS  Google Scholar 

  30. Shi Y, Shao L, Yang J, Huang T, Wang Y, Zhang N, Wang Y (2013) Highly improved crystallization behavior of poly(L-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts. Polym Adv Technol 24(1):42–50. https://doi.org/10.1002/pat.3047

    Article  CAS  Google Scholar 

  31. Cai Y, Yan S, Yin J, Fan Y, Chen X (2011) Crystallization behavior of biodegradable poly(L-lactic acid) filled with a powerful nucleating agent: N,N′-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci 121(3):1408–1416. https://doi.org/10.1002/app.33633

    Article  CAS  Google Scholar 

  32. George S, Varughese KT, Thomas S (2000) Thermal and crystallisation behaviour of isotactic polypropylene/nitrile rubber blends. Polymer 41(14):5485–5503. https://doi.org/10.1016/S0032-3861(99)00719-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 21878089 and 21606084), National Key R&D Program of China (2016YFB0302201) and the Fundamental Research Funds for the Central Universities (22221818010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicheng Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, Y., Xin, Z. et al. Increased nucleation efficiency of an in situ–formed β-nucleating agent for impact polypropylene copolymer. J Polym Res 26, 245 (2019). https://doi.org/10.1007/s10965-019-1908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1908-0

Keywords

Navigation