Advertisement

Influence of annealing on the morphology and mechanical properties of iPP/HDPE blend with tailored oriented crystalline structures

  • Xuanbo Gu
  • Man Zhou
  • Yingxiong Wang
  • Jie ZhangEmail author
ORIGINAL PAPER
  • 69 Downloads

Abstract

In this article, two kinds of isotactic polypropylene (iPP)/high density molecular weight polyethylene (HDPE) blend samples were prepared by an accessible injection-molding method. These two samples contain iPP shish kebab matrix and HDPE dispersed phase (shish kebab and epitaxy crystal, respectively). The variation of microstructures upon annealing was characterized using scanning electron microscopy, differential scanning calorimetry and small-angle X-ray scattering. It was found that the variations of different crystalline structures were changed by varying annealing parameters. Only the rearrangement of partially melted chains into primary lamellae happened for the sample with epitaxy crystalline structure, which was distinguished from the sample with HDPE shish kebab structure. Moreover, the variation of the crystalline structure, crystallinity and melting point were discussed to account for the changes in mechanical properties. These results revealed the relationship among the morphology, annealing parameters and mechanical properties, which provide a practical method to industrial manufacture.

Keywords

Annealing Epitaxy crystalline Shish-kebab Mechanical properties Blend 

Notes

Acknowledgements

This work was financially supported by The National Natural Science Foundation of China (No. 0030905401227). The authors also express sincere thanks to the Shanghai Synchrotron Radiation Facility (SSRF), China.

References

  1. 1.
    Blom HP, Teh JW, Bremner T, Rudin A (1998) Isothermal and non-isothermal crystallization of PP: effect of annealing and of the addition of HDPE. Polymer 39(17):4011–4022CrossRefGoogle Scholar
  2. 2.
    Ferrer-Balas D, Maspoch ML, Martinez AB, Santana OO (2001) Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer 42(4):1697–1705CrossRefGoogle Scholar
  3. 3.
    Frontini PM, Fave A (1995) The effect of annealing temperature on the fracture performance of isotactic polypropylene. J Mater Sci 30(9):2446–2454CrossRefGoogle Scholar
  4. 4.
    Pralay Maiti; Masamichi Hikosaka, ‡; Koji Yamada; Akihiko Toda, A.; Gu†, F., Lamellar Thickening in Isotactic Polypropylene with High Tacticity Crystallized at High Temperature. Macromolecules 2000, 33 (33), 9069–9075Google Scholar
  5. 5.
    Rastogi S, Spoelstra AB (1999) Chain mobility in polymer systems : on the borderline between solid and melt 1. Lamellar doubling during annealing of polyethylene. Macromolecules 30(25):7880–7889CrossRefGoogle Scholar
  6. 6.
    Bai H, Deng H, Zhang Q, Wang K, Fu Q, Zhang Z, Men Y (2012) Effect of annealing on the microstructure and mechanical properties of polypropylene with oriented shish-kebab structure. Polym Int 61(2):252–258CrossRefGoogle Scholar
  7. 7.
    Bai H, Wang Y, Zhang Z, Liang H, Li Y, Li L, Zhou Z, Men Y (2009) Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 42(17):6647–6655CrossRefGoogle Scholar
  8. 8.
    Han L, Li X, Li Y, Huang T, Wang Y, Wu J, Xiang F (2010) Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater Sci Eng A 527(13):3176–3185CrossRefGoogle Scholar
  9. 9.
    Wang L, Zhang QP, Wang JH, Yang B, Yang MB, Feng JM (2014) Effects of annealing on the hierarchical crystalline structures and mechanical properties of injection-molded bars of high-density polyethylene. Polym Int 63(2):296–306CrossRefGoogle Scholar
  10. 10.
    Liu D, Jian K, Ming X, Cao Y (2013) Effect of annealing on phase structure and mechanical behaviors of polypropylene hard elastic films. J Polym Res 20(5):126CrossRefGoogle Scholar
  11. 11.
    Xu R, Sheng Z, Wang J, Jian K, Ming X, Feng Y (2018) Impact of different die draw ratio on crystalline and oriented properties of polypropylene cast films and annealed films. J Polym Res 25(6):142CrossRefGoogle Scholar
  12. 12.
    Hedesiu C, §; Demco DE., ‡; Kleppinger R; Vanden Poel G; Gijsbers W; Blümich B; Remerie K, a.; VM (2007) Litvinov, effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid-state NMR, SAXS, and DSC. Macromolecules 40 (40), 3977–3989Google Scholar
  13. 13.
    Yao YF, Graf R, Spiess HW, Rastogi S (2008) Restricted segmental mobility can facilitate medium-range chain diffusion: a NMR study of morphological influence on chain dynamics of polyethylene. Macromolecules 41(7):2514–2519CrossRefGoogle Scholar
  14. 14.
    Somani RH, Yang L, Zhu L, Hsiao BS (2005) Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46(20):8587–8623CrossRefGoogle Scholar
  15. 15.
    Zhang, A.; Xiao, C.; Wu, Y.; Li, C.; Ji, Y.; Li, L.; Hu, W.; Wang, Z.; Ma, W.; Li, W. (2016) Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. Macromolecules 49 (17)Google Scholar
  16. 16.
    Jiang J, Liu X, Lian M, Pan Y, Chen Q, Liu H, Zheng G, Guo Z, Schubert DW, Shen C (2018) Self-reinforcing and toughening isotactic polypropylene via melt sequential injection molding. Polym Test 67:183–189CrossRefGoogle Scholar
  17. 17.
    Mi D-S, Hou F-Y, Zhou M, Zhang J (2018) Distribution of α-, β-, and γ-phases in a multi-flow injection-molded hierarchical structure. Chin J Polym Sci 6:1–11Google Scholar
  18. 18.
    Wang X, Pan Y, Qin Y, Voigt M, Liu X, Zheng G, Chen Q, Schubert DW, Liu C, Shen C (2018) Creep and recovery behavior of injection-molded isotactic polypropylene with controllable skin-core structure. Polym Test 69:478–484CrossRefGoogle Scholar
  19. 19.
    Li Z, Bing N, Tian N, Lv R, Zou S (2011) Enhanced molecular orientation and strain hardening in melt-spun isotactic polypropylene monofilaments through partial melting recrystallization. J Appl Polym Sci 123(2):995–999CrossRefGoogle Scholar
  20. 20.
    Gross B, Peterman J (1984) Synergisms of mechanical properties in blends of semi-crystalline polymers. J Mater Sci 19(1):105–112CrossRefGoogle Scholar
  21. 21.
    Lotz B; Wittmann JC (2010) Polyethylene–isotactic polypropylene epitaxy: Analysis of the diffraction patterns of oriented biphasic blends. J Polym Sci B Polym Phys 25 (5), −Google Scholar
  22. 22.
    Petermann J, Xu Y (1991) The origin of heteroepitaxy in the system of uniaxially oriented isotactic polypropylene and polyethylene. J Mater Sci 26(5):1211–1215CrossRefGoogle Scholar
  23. 23.
    Petermann J, Broza G, Rieck U, Kawaguchi A (1987) Epitaxial interfaces in semi-crystalline polymers and their applications. J Mater Sci 22(4):1477–1481CrossRefGoogle Scholar
  24. 24.
    Zhou M, Mi D, Hou F, Zhang J (2017) Tailored crystalline structure and mechanical properties of isotactic polypropylene/high molecular weight polyethylene blend. Ind Eng Chem Res 56(29):8385–8392CrossRefGoogle Scholar
  25. 25.
    Na B, Zhang Q, Wang K, Li L, Fu Q (2005) Origin of various lamellar orientations in high-density polyethylene/isotactic polypropylene blends achieved via dynamic packing injection molding: bulk crystallization vs. epitaxy. Polymer 46(3):819–825CrossRefGoogle Scholar
  26. 26.
    Su R, Wang K, Zhang Q, Chen F, Fu Q, Hu N, Chen E (2011) Epitaxial crystallization and oriented structure of linear low-density polyethylene/isotactic polypropylene blends obtained via dynamic packing injection molding. Polym Adv Technol 22(2):225–231CrossRefGoogle Scholar
  27. 27.
    Su R, Wang K, Zhang Q, Chen F, Fu Q, Xu W, Na B (2009) Orientation and epitaxy in the injection-molded bars of linear low-density polyethylene/isotactic polypropylene blends: an infrared dichroism measurement. J Phys Chem B 113(21):7423–7429CrossRefGoogle Scholar
  28. 28.
    Zhi-hao; Zhao; Fei-fei; Wang; Zhou; Kai-zhi; Shen; Zhang (2016) Altering the Hierarchical Morphology Distribution of Injection Molded Polyethylene by the Introduction of Crosslink Network and Periodical Shear. Chin J Polym Sci 34 (12), 1479–1489Google Scholar
  29. 29.
    Ren-xi; Qi-xiong; Zhou; Chao; Da-shan; Zhang (2015) The Banded Spherulites of iPP Induced by Pressure Vibration Injection Molding. Chin J Polym Sci 33 (11), 1625–1632Google Scholar
  30. 30.
    Deng P, Whiteside B, Wang F, Norris K, Zhang J (2014) Epitaxial growth and morphological characteristics of isotactic polypropylene/polyethylene blends: scale effect and mold temperature. Polym Test 34:192–201CrossRefGoogle Scholar
  31. 31.
    Olley RH, Bassett DC (1982) An improved permanganic etchant for polyolefines. Polymer 23(12):1707–1710CrossRefGoogle Scholar
  32. 32.
    Shouke Yan DY (1998) Jürgen Petermann, controlling factors for the occurrence of heteroepitaxy of polyethylene on highly oriented isotactic polypropylene. Polymer 39(19):4569–4578CrossRefGoogle Scholar
  33. 33.
    Gu X, Wang Y, Jiang Y, Liu M, Fu Q, Zhang J (2019) High impact performance induced by a synergistic effect of heteroepitaxy and oriented layer-unoriented layer alternated structure in iPP/HDPE injection molded part. Polymer 175:206–214CrossRefGoogle Scholar
  34. 34.
    Niu B, Chen JB, Chen J, Xu J, Zhong GJ, Li ZM (2015) Crystallization of linear low density polyethylene on in situ oriented isotactic polypropylene substrate manipulated by extensional flow field. Crystengcomm 18(1):77–91CrossRefGoogle Scholar
  35. 35.
    Donnay M, Ponçot M, Tinnes JP, Schenk T, Ferry O, Royaud I (2017) In situ study of the tensile deformation micro-mechanisms of semi-crystalline POLY(ETHYLENE terephthalate) films using synchrotron radiation X-ray scattering. Polymer 117:268–281CrossRefGoogle Scholar
  36. 36.
    Housmans JW, Gahleitner M, Peters GWM, Han EHM (2009) Structure–property relations in molded, nucleated isotactic polypropylene. Polymer 50(10):2304–2319CrossRefGoogle Scholar
  37. 37.
    Liu X, Dai K, Hao X, Zheng G, Liu C, Schubert DW, Shen C (2013) Crystalline structure of injection molded β-isotactic polypropylene: analysis of the oriented shear zone. Ind Eng Chem Res 52(34):11996–12002CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Xuanbo Gu
    • 1
  • Man Zhou
    • 1
  • Yingxiong Wang
    • 1
  • Jie Zhang
    • 1
    Email author
  1. 1.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations