Advertisement

Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer

  • Yifu Chen
  • Guozheng KangEmail author
  • Jianghong Yuan
  • Tiefeng Li
ORIGINAL PAPER

Abstract

The cyclic deformation of VHB 4910 dielectric elastomer is experimentally investigated by performing a series of strain-controlled and stress-controlled pure-shear-like cyclic tests at room temperature. In the strain-controlled cyclic tests, obvious Mullins effect is observed in the first cycle, and continuous stress softening is characterized in the subsequent cycles; the Mullins effect and continuous stress softening are intensified by prescribing larger peak strains and higher strain rates. In the stress-controlled cyclic tests, remarkable ratchetting takes place, and its evolution becomes more significant if higher stress levels, lower stress rates and longer hold time at peak stress are prescribed. Moreover, a partial recovery of residual strain indicates that, besides obvious hyper-elasticity, the VHB 4910 dielectric elastomer also exhibits both recoverable viscoelasticity and measurable irrecoverable visco-plasticity during the cyclic tests.

Keywords

Dielectric elastomer Cyclic deformation Time-dependence Stress softening Ratchetting 

Notes

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (11272269 and 11572265), the Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, China (SZDLH-1702) and Doctoral Innovation Fund Program of Southwest Jiaotong University (D-CX201837).

References

  1. 1.
    Pelrine R, Kornbluh R, Pei QB, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839CrossRefGoogle Scholar
  2. 2.
    Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (2008) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. ElsevierGoogle Scholar
  3. 3.
    Li T, Keplinger C, Baumgartner R, Bauer S, Yang W, Suo Z (2013) Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J Mech Phys Solids 61(2):611–628CrossRefGoogle Scholar
  4. 4.
    Gu G-Y, Zhu J, Zhu L-M, Zhu X (2017) A survey on dielectric elastomer actuators for soft robots. Bioinspiration & Biomimetics 12(1)Google Scholar
  5. 5.
    Li T, Li G, Liang Y, Cheng T, Dai J, Yang X, Liu B, Zeng Z, Huang Z, Luo Y, Xie T, Yang W (2017) Fast-moving soft electronic fish. Sci Adv 3(4):e1602045CrossRefGoogle Scholar
  6. 6.
    Wissler M, Mazza E (2005) Modeling of a pre-strained circular actuator made of dielectric elastomers. Sensors Actuators A Phys 120(1):184–192CrossRefGoogle Scholar
  7. 7.
    Kofod G (2001) Dielectric elastomer actuators: Ph. D. Thesis. The Technical University of DenmarkGoogle Scholar
  8. 8.
    Gao Z, Tuncer A, Cuitiño AM (2011) Modeling and simulation of the coupled mechanical–electrical response of soft solids. Int J Plast 27(10):1459–1470CrossRefGoogle Scholar
  9. 9.
    Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523CrossRefGoogle Scholar
  10. 10.
    Treloar L (1944) Stress-strain data for vulcanised rubber under various types of deformation. Trans Faraday Soc 40:59–70CrossRefGoogle Scholar
  11. 11.
    Schmidt A, Rothemund P, Mazza E (2012) Multiaxial deformation and failure of acrylic elastomer membranes. Sensors Actuators A Phys 174:133–138CrossRefGoogle Scholar
  12. 12.
    Wissler M, Mazza E (2007) Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sensors Actuators A Phys 134(2):494–504CrossRefGoogle Scholar
  13. 13.
    Sahu RK, Patra K (2016) Rate-dependent mechanical behavior of VHB 4910 elastomer. Mech Adv Mater Struct 23(2):170–179CrossRefGoogle Scholar
  14. 14.
    Sahu RK, Patra K, Szpunar J (2015) Experimental study and numerical modelling of creep and stress relaxation of dielectric elastomers. Strain 51(1):43–54CrossRefGoogle Scholar
  15. 15.
    Michel S, Zhang XQ, Wissler M, Löwe C, Kovacs G (2010) A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators. Polym Int 59(3):391–399CrossRefGoogle Scholar
  16. 16.
    Hossain M, Vu DK, Steinmann P (2012) Experimental study and numerical modelling of VHB 4910 polymer. Comput Mater Sci 59:65–74CrossRefGoogle Scholar
  17. 17.
    Qu S, Li K, Li T, Jiang H, Wang M, Li Z (2012) Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. Acta Mech Solida Sin 25(5):542–549CrossRefGoogle Scholar
  18. 18.
    Hossain M, Vu DK, Steinmann P (2015) A comprehensive characterization of the electro-mechanically coupled properties of VHB 4910 polymer. Arch Appl Mech 85(4):523–537CrossRefGoogle Scholar
  19. 19.
    Fan W, Wang Y, Cai S (2017) Fatigue fracture of a highly stretchable acrylic elastomer. Polym Test 61:373–377CrossRefGoogle Scholar
  20. 20.
    Yu W, Chen X, Wang Y, Yan L, Bai N (2008) Uniaxial ratchetting behavior of vulcanized natural rubber. Polym Eng Sci 48(1):191–197CrossRefGoogle Scholar
  21. 21.
    Chen K, Kang G, Lu F, Jiang H (2015) Uniaxial cyclic deformation and internal heat production of ultra-high molecular weight polyethylene. J Polym Res 22(11)Google Scholar
  22. 22.
    Chen Y, Kang G, Yuan J, Yu C (2018) Uniaxial ratchetting of filled rubber: experiments and damage-coupled hyper-viscoelastic-plastic constitutive model. J Appl Mech 85(6):061013CrossRefGoogle Scholar
  23. 23.
    Treloar L (1943) The elasticity of a network of long-chain molecules—II. Trans Faraday Soc 39:241–246CrossRefGoogle Scholar
  24. 24.
    Yeoh O (2001) Analysis of deformation and fracture of ‘pure shear’rubber testpiece. Plast Rubber Compos 30(8):389–397CrossRefGoogle Scholar
  25. 25.
    Federico C, Iain A, Siegfried B, Gabriele F, Giuseppe G, Massimiliano G, Christian G, Claire J-M, William K, Guggi K, Matthias K, Roy K, Benny L, Marc M, Silvain M, Stephan N, Benjamin OB, Qibing P, Ron P, Björn R, Samuel R, Herbert S (2015) Standards for dielectric elastomer transducers. Smart Mater Struct 24(10):105025CrossRefGoogle Scholar
  26. 26.
    Vertechy R, Fontana M, Stiubianu G, Cazacu M (2014) Open-access dielectric elastomer material database. In electroactive polymer actuators and devices. Proc of SPIE, San Diego, California.  https://doi.org/10.1117/12.2045053
  27. 27.
    Zhou J, Jiang L, Khayat RE (2018) A micro–macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. Journal of the Mechanics and Physics of Solids 110:137–154.  https://doi.org/10.1016/j.jmps.2017.09.016 CrossRefGoogle Scholar
  28. 28.
    Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45(3):601–612CrossRefGoogle Scholar
  29. 29.
    Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42(1):339–362CrossRefGoogle Scholar
  30. 30.
    Qi HJ, Boyce MC (2005) Stress–strain behavior of thermoplastic polyurethanes. Mech Mater 37(8):817–839CrossRefGoogle Scholar
  31. 31.
    Lu T, Wang J, Yang R, Wang T (2017) A constitutive model for soft materials incorporating viscoelasticity and Mullins effect. J Appl Mech 84(2):021010CrossRefGoogle Scholar
  32. 32.
    Kang G (2008) Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application. Int J Fatigue 30(8):1448–1472CrossRefGoogle Scholar
  33. 33.
    Fan F, Szpunar J (2015) Characterization of viscoelasticity and self-healing ability of VHB 4910. Macromol Mater Eng 300(1):99–106CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Yifu Chen
    • 1
    • 2
  • Guozheng Kang
    • 1
    • 2
    Email author
  • Jianghong Yuan
    • 2
  • Tiefeng Li
    • 3
  1. 1.State Key Laboratory of Traction PowerSouthwest Jiaotong UniversityChengduChina
  2. 2.Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and EngineeringSouthwest Jiaotong UniversityChengduChina
  3. 3.Department of Engineering MechanicsZhejiang UniversityZhejiangChina

Personalised recommendations