Deformation modeling of polyamide 6 and the effect of water content using molecular dynamics simulation

  • Daiki Ikeshima
  • Fumika Nishimori
  • Akio YonezuEmail author


Polyamide 6 (PA6) shows significant water absorbability and hygroscopicity, which affect its mechanical properties such as Young’s modulus and yield strength, as water content enhances deformability. This study aims to investigate the effect of water molecules on the deformation behavior of PA6 and to elucidate the deformation mechanism at a molecular level. By using excluded volume map sampling method, we explored the possible incursion sites for water molecule absorption in the computational material cell. Using molecular dynamic simulations, we created the computational cell of PA6, and we applied mechanical loadings with and without the water molecule to determine the effect of water molecules on the deformation behavior. To investigate the fundamental reasons why water molecules enhance the deformability of PA6, we calculated the non-bonded potential energy of a pair of amide functional groups with and without the water molecule. The results reveal that water molecules decrease the interaction energy of the amide group, leading to macroscopic deformation. This study clarified the effect of water molecules on the deformation behavior of PA6, and it may be useful for predicting the mechanical deformation of PA6.


Polyamide 6 Water Mechanical property Deformation Molecular dynamics simulation 



This work is supported by the JSPS KAKENHI (grant no. 17 K06062) from the Japan Society for the Promotion of Science and by a research grant from The Suga Weathering Technology Foundation (no. 67).


  1. 1.
    Shu Y, Ye L, Yang T (2008) Study on the long-term thermal-oxidative aging behavior of polyamide 6. J Appl Polym Sci 110:945–957CrossRefGoogle Scholar
  2. 2.
    Mourglia-Seignobos E, Long DR, Odonii L, Vanel L, Sotta P, Rochas C (2014) Physical mechanisms of fatigue in neat polyamide 6,6. Macromolecules 47:3880–3894CrossRefGoogle Scholar
  3. 3.
    Launay A, Maitournam MH, Marco Y, Raoult I, Szmytka F (2011) Cyclic behaviour of short glass fibre reinforced polyamide: experimental study and constitutive equations. Int J Plast 27:1267–1293CrossRefGoogle Scholar
  4. 4.
    Arhant M, Gac P-YL, Gall ML, Burtin C, Briançon C, Davies P (2016) Effect of sea water and humidity on the tensile and compressive properties of carbon-polyamide 6 laminates. Compos A: Appl Sci Manuf 91:250–261CrossRefGoogle Scholar
  5. 5.
    Gac P-YL, Arhant M, Gall ML, Davies P (2017) Yield stress changes induced by water in polyamide 6: Characterization and modeling. Polym Degrad Stab 137:272–280CrossRefGoogle Scholar
  6. 6.
    Hutton EA, Gartside J Text I 40 (1949)Google Scholar
  7. 7.
    Abbott NJ, Goodings AC (1948). J Text I 40:T232Google Scholar
  8. 8.
    Batzer H, Kreibich UT (1981). Polym Bull 5:585CrossRefGoogle Scholar
  9. 9.
    Bernstein R, Derzon DK, Gillen KT (2005) Nylon 6.6 accelerated aging studies: thermal–oxidative degradation and its interaction with hydrolysis. Polym Degrad Stab 88:480–488CrossRefGoogle Scholar
  10. 10.
    Goudeau S, Charlot M, Vergelati C, Müller-Plathe F (2004) Atomistic simulation of the water influence on the local structure of polyamide 6,6. MacroMolecules 37:8072–8081CrossRefGoogle Scholar
  11. 11.
    Hossain D, Tschopp MA, Ward DK, Bouvard JL, Wang P, Horstemeyer MF (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51:6071–6083CrossRefGoogle Scholar
  12. 12.
    Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T (2014). Microsc Microanal 68:70Google Scholar
  13. 13.
    Hagita K, Morita H, Takano H (2016) Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer 99:368–375CrossRefGoogle Scholar
  14. 14.
    Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRefGoogle Scholar
  15. 15.
    Che J, Locker CR, Lee S, Rutledge GC, Hsiao BS, Tsou AH (2013) Plastic deformation of semicrystalline polyethylene by X-ray scattering: comparison with atomistic simulations. Macromolecules 46:5279–5289CrossRefGoogle Scholar
  16. 16.
    Luo K, Yudewitz N, Subhash G, Spearot DE (2019) Effect of water concentration on the shock response of polyethylene glycol diacrylate (PEGDA) hydrogels: a molecular dynamics study. J Mech Behav Biomed Mater 90:30–39CrossRefGoogle Scholar
  17. 17.
    Ikeshima D, Miyamoto K, Yonezu A (2019) Molecular deformation mechanism of polycarbonate during nano-indentation: molecular dynamics simulation and experimentation. Polymer 173:80–87CrossRefGoogle Scholar
  18. 18.
    Ikeshima D, Yonezu A, liu L (2018) Molecular origins of elastoplastic behavior of polycarbonate under tension: a coarse-grained molecular dynamics approach. Comput Mater Sci 145:306–319CrossRefGoogle Scholar
  19. 19.
    Piana S, Lindorff-Larsen K, Dirks RM, Salmon JK, Dror RO, Shaw DE (2012). PLoS ONE 7:1CrossRefGoogle Scholar
  20. 20.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  21. 21.
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260CrossRefGoogle Scholar
  22. 22.
    Wu Y, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124:024503CrossRefGoogle Scholar
  23. 23.
    Plimpton S (1993). J Comput Phys 117:1CrossRefGoogle Scholar
  24. 24.
    Granovsky AA, Accessed 20 Feb 2019
  25. 25.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  26. 26.
    Roldan LG, Kaufman HS (1963). J Polym Sci B: Polymer Letters Banner 1:603CrossRefGoogle Scholar
  27. 27.
    Alexander LE wiley-interscience (1970)Google Scholar
  28. 28.
    Ueta S, Sakamoto T, Takayanagi M (1993) Effects of Molecular weight of Nylon 6 on the structure and properties of nylon 6/Poly(p-phenyleneterephthalamide) molecular composites. Polym J 25:31–40CrossRefGoogle Scholar
  29. 29.
    Prevorsek DC, Butler RH (1973) Effect of molecular weight on the strength of Nylon 6 and PET fibers. Int J Polym Mater Polym Biomater 2:185–203CrossRefGoogle Scholar
  30. 30.
    Yoshii N, Miura S, Okazaki S (2001) A molecular dynamics study of dielectric constant of water from ambient to sub- and supercritical conditions using a fluctuating-charge potential model. Chem Phys Lett 345:195–200CrossRefGoogle Scholar
  31. 31.
    Hirota S, Saito S, Nakajima T (1966). Colloid Polym Sci 213:109Google Scholar
  32. 32.
    Deitrick GL, Scriven LE, Davis HT (1998). J Chem Phys 90:2370CrossRefGoogle Scholar
  33. 33.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  34. 34.
    Arasha B, Thijsse BJ, Pecenko A, Simone A (2017) Effect of water content on the thermal degradation of amorphous polyamide 6,6: a collective variable-driven hyperdynamics study. Polym Degrad Stab 146:260–266CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Precision MechanicsChuo UniversityTokyoJapan

Personalised recommendations