Advertisement

Morphological, barrier and mechanical properties of films from poly (butylene succinate) reinforced with nanocrystalline cellulose and chitin whiskers using melt extrusion

  • Jingwen Xu
  • Pavan Harshit Manepalli
  • Lijia Zhu
  • Sridevi Narayan-Sarathy
  • Sajid AlaviEmail author
ORIGINAL PAPER
  • 106 Downloads

Abstract

Nanocomposites from biodegradable poly (butylene succinate) (PBS), blended with nanofillers chitin whiskers (CHW, 1–5%) and nanocrystalline cellulose (NCC, 1–5%), were synthesized using melt extrusion. Morphological studies using transmission electron microscopy showed the dispersion of nanofillers in the polymer matrix. The nanofillers restricted the mobility of polymer chains, and promoted nucleation and recrystallization of polymer as reflected by increase in degree of crystallinity (Xc) from 65.9 to 75.6%. Addition of NCC and CHW increased the tensile strength of PBS based films from 23.2 MPa to 32.9 MPa and 43.6 MPa, respectively. Decrease in oxygen transmission rate of PBS films from 737.7 to 280 cc/m2/day was observed by adding 3% NCC, which further reduced to 23.8 cc/m2/day by adding compatibilizer methylene diphenyl diisocyanate (MDI, 4%). Water vapor transmission rate of PBS films reduced from 83.8 to 49.4 g/m2/day with 3% NCC addition and addition of 4% MDI further reduced it to 30.8 g/m2/day. This research suggested potential of NCC and CHW as nanofillers for enhancement of mechanical and barrier properties of PBS based films used in biodegradable food packaging applications.

Keywords

Nanocrystalline cellulose Chitin whiskers Poly (butylene succinate) Biodegradable nanocomposites 

Notes

Acknowledgements

The authors would like to thank Dr. Dan Boyle (Biology, KSU) for help with transmission electron microscopy and Dr. Xiuzhi (Susan) Sun (Grain Science and Industry, KSU) for providing invaluable suggestions and access to equipment in her lab.

References

  1. 1.
    Yang K-K, Wang X-L, Wang Y-Z (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500Google Scholar
  2. 2.
    Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501.  https://doi.org/10.1016/j.biortech.2010.05.092 CrossRefPubMedGoogle Scholar
  3. 3.
    Phua YJ, Lau NS, Sudesh K, Chow WS, Mohd Ishak ZA (2012) Biodegradability studies of poly (butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354.  https://doi.org/10.1016/j.polymdegradstab.2012.05.024 CrossRefGoogle Scholar
  4. 4.
    Nishide H, Toyota K, Kimura M (1999) Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms. Soil Sci Plant Nutr 45:963–972.  https://doi.org/10.1080/00380768.1999.10414346 CrossRefGoogle Scholar
  5. 5.
    Kim H-S, Yang H-S, Kim H-J (2005) Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. J Appl Polym Sci 97:1513–1521.  https://doi.org/10.1002/app.21905 CrossRefGoogle Scholar
  6. 6.
    Tezuka Y, Ishii N, Kasuya K, Mitomo H (2004) Degradation of poly (ethylene succinate) by mesophilic bacteria. Polym Degrad Stab 84:115–121.  https://doi.org/10.1016/j.polymdegradstab.2003.09.018 CrossRefGoogle Scholar
  7. 7.
    Joy J, Jose C, Yu X, Mathew L, Thomas S, Pilla S (2017) The influence of nanocellulosic fiber, extracted from Helicteres isora, on thermal, wetting and viscoelastic properties of poly (butylene succinate) composites. Cellulose 24:4313–4323.  https://doi.org/10.1007/s10570-017-1439-y CrossRefGoogle Scholar
  8. 8.
    Frollini E, Bartolucci N, Sisti L, Celli A (2013) Poly (butylene succinate) reinforced with different lignocellulosic fibers. Ind Crop Prod 45:160–169.  https://doi.org/10.1016/j.indcrop.2012.12.013 CrossRefGoogle Scholar
  9. 9.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784.  https://doi.org/10.1016/j.compscitech.2006.03.002 CrossRefGoogle Scholar
  10. 10.
    Kargarzadeh H, Ioelovich M, Ahmad I, Thomas S, Dufresne A (2017) Methods for extraction of Nanocellulose from various sources. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of Nanocellulose and cellulose nanocomposites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–49CrossRefGoogle Scholar
  11. 11.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500.  https://doi.org/10.1021/cr900339w CrossRefPubMedGoogle Scholar
  12. 12.
    Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969.  https://doi.org/10.1007/s10570-015-0551-0 CrossRefGoogle Scholar
  13. 13.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52:791–806.  https://doi.org/10.1002/polb.23490 CrossRefGoogle Scholar
  14. 14.
    Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206.  https://doi.org/10.1002/cjce.20554 CrossRefGoogle Scholar
  15. 15.
    Nascimento DM, Nunes YL, Figueirêdo MCB, de Azeredo HMC, Aouada FA, Feitosa JPA, Rosa MF, Dufresne A (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20:2428–2448.  https://doi.org/10.1039/C8GC00205C CrossRefGoogle Scholar
  16. 16.
    Gopalan Nair K, Dufresne A, Gandini A, Belgacem MN (2003) Crab Shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4:1835–1842.  https://doi.org/10.1021/bm030058g CrossRefPubMedGoogle Scholar
  17. 17.
    Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mater Sci 30:225–242Google Scholar
  18. 18.
    Zeng J-B, He Y-S, Li S-L, Wang Y-Z (2012) Chitin whiskers: an overview. Biomacromolecules 13:1–11.  https://doi.org/10.1021/bm201564a CrossRefPubMedGoogle Scholar
  19. 19.
    Gopi S, Balakrishnan P, Pius A, Thomas S (2017) Chitin nanowhisker ( ChNW )-functionalized electrospun PVDF membrane for enhanced removal of indigo carmine. Carbohydr Polym 165:115–122.  https://doi.org/10.1016/j.carbpol.2017.02.046 CrossRefPubMedGoogle Scholar
  20. 20.
    Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2008) Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 110:890–899.  https://doi.org/10.1002/app.28634 CrossRefGoogle Scholar
  21. 21.
    Uesaka T, Nakane K, Maeda S, Ogihara T, Ogata T (2000) Structure and physical properties of poly (butylene succinate)/cellulose acetate blends. Polymer 41:8449–8454.  https://doi.org/10.1016/S0032-3861(00)00206-8 CrossRefGoogle Scholar
  22. 22.
    Kuan C-F, Ma C-CM, Kuan H-C, Wu HL, Liao YM (2006) Preparation and characterization of the novel water-crosslinked cellulose reinforced poly (butylene succinate) composites. Compos Sci Technol 66:2231–2241.  https://doi.org/10.1016/j.compscitech.2005.12.011 CrossRefGoogle Scholar
  23. 23.
    Liu L, Yu J, Cheng L, Qu W (2009) Mechanical properties of poly (butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Compos A: Appl Sci Manuf 40:669–674.  https://doi.org/10.1016/j.compositesa.2009.03.002 CrossRefGoogle Scholar
  24. 24.
    Wu C-S, Liao H-T, Jhang J-J (2013) Palm fibre-reinforced hybrid composites of poly (butylene succinate): characterisation and assessment of mechanical and thermal properties. Polym Bull 70:3443–3462.  https://doi.org/10.1007/s00289-013-1032-y CrossRefGoogle Scholar
  25. 25.
    Qi Z, Ye H, Xu J, Peng J, Chen J, Guo B (2013) Synthesis and characterizations of attapulgite reinforced branched poly (butylene succinate) nanocomposites. Colloids Surf A Physicochem Eng Asp 436:26–33.  https://doi.org/10.1016/j.colsurfa.2013.06.019 CrossRefGoogle Scholar
  26. 26.
    Malwela T, Ray SS (2012) Study of morphology and crystal growth behaviour of nanoclay-containing biodegradable polymer blend thin films using atomic force microscopy. Polymer 53:2705–2716CrossRefGoogle Scholar
  27. 27.
    Jacquel N, Saint-Loup R, Pascault J-P, Rousseau A, Fenouillot F (2014) Structure-properties relationship of in situ synthesized poly (butylene succinate)/silica nanocomposites: application in extrusion blowing of films: PBS/silica nanocomposites. Macromol Mater Eng 299:977–989.  https://doi.org/10.1002/mame.201300370 CrossRefGoogle Scholar
  28. 28.
    Wu W, Cao X, Luo J, He G, Zhang Y (2014) Morphology, thermal, and mechanical properties of poly (butylene succinate) reinforced with halloysite nanotube. Polym Compos 35:847–855.  https://doi.org/10.1002/pc.22728 CrossRefGoogle Scholar
  29. 29.
    Chiu F-C (2016) Fabrication and characterization of biodegradable poly (butylene succinate-co-adipate) nanocomposites with halloysite nanotube and organo-montmorillonite as nanofillers. Polym Test 54:1–11.  https://doi.org/10.1016/j.polymertesting.2016.06.018 CrossRefGoogle Scholar
  30. 30.
    Zeng R-T, Hu W, Wang M, Zhang SD, Zeng JB (2016) Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly (butylene succinate) nanocomposites with low percolation threshold. Polym Test 50:182–190.  https://doi.org/10.1016/j.polymertesting.2016.01.003 CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Xu J, Guo B (2016) Photodegradation behavior of poly (butylene succinate-co-butylene adipate)/ZnO nanocomposites. Colloids Surf A Physicochem Eng Asp 489:173–181.  https://doi.org/10.1016/j.colsurfa.2015.10.038 CrossRefGoogle Scholar
  32. 32.
    Li Y-D, Fu Q-Q, Wang M, Zeng J-B (2017) Morphology, crystallization and rheological behavior in poly (butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym 164:75–82.  https://doi.org/10.1016/j.carbpol.2017.01.089 CrossRefPubMedGoogle Scholar
  33. 33.
    Fortunati E, Gigli M, Luzi F, Dominici F, Lotti N, Gazzano M, Cano A, Chiralt A, Munari A, Kenny JM, Armentano I, Torre L (2017) Processing and characterization of nanocomposite based on poly (butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydr Polym 165:51–60.  https://doi.org/10.1016/j.carbpol.2017.02.024 CrossRefPubMedGoogle Scholar
  34. 34.
    Li B, Yang M (2006) Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polym Adv Technol 17:439–443.  https://doi.org/10.1002/pat.731 CrossRefGoogle Scholar
  35. 35.
    Huang Y, Zhang L, Yang J, Zhang X, Xu M (2013) Structure and properties of cellulose films reinforced by chitin whiskers. Macromol Mater Eng 298:303–310.  https://doi.org/10.1002/mame.201200011 CrossRefGoogle Scholar
  36. 36.
    Lin N, Yu J, Chang PR, Li J, Huang J (2011) Poly (butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties. Polym Compos 32:472–482.  https://doi.org/10.1002/pc.21066 CrossRefGoogle Scholar
  37. 37.
    ASTM (2002) Standard test method for tensile properties of thin plastic sheeting. d882-02. In Annual book of ASTM standards. PhiladelphiaGoogle Scholar
  38. 38.
    Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777.  https://doi.org/10.1016/j.ijbiomac.2015.08.053 CrossRefPubMedGoogle Scholar
  39. 39.
    Joy J, Jose C, Varanasi SB, Mathew P. L, Thomas S, Pilla S (2016) Preparation and characterization of poly (butylene succinate) bionanocomposites reinforced with cellulose nanofiber extracted from Helicteres isora plant. J Renew Mater 4:351–364.  https://doi.org/10.7569/JRM.2016.634128 CrossRefGoogle Scholar
  40. 40.
    Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid). J Mater Sci 47:2675–2686.  https://doi.org/10.1007/s10853-011-6093-4 CrossRefGoogle Scholar
  41. 41.
    Chaiwutthinan P, Pimpan V, Chuayjuljit S, Leejarkpai T (2015) Biodegradable plastics prepared from poly (lactic acid), poly (butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. J Polym Environ 23:114–125.  https://doi.org/10.1007/s10924-014-0689-0 CrossRefGoogle Scholar
  42. 42.
    Zainal Abidin AS, Yusoh K, Jamari SS, Abdullah AH, Ismail Z (2018) Surface functionalization of graphene oxide with octadecylamine for improved thermal and mechanical properties in polybutylene succinate nanocomposite. Polym Bull 75:3499–3522.  https://doi.org/10.1007/s00289-017-2217-6 CrossRefGoogle Scholar
  43. 43.
    He Y-S, Zeng J-B, Li S-L, Wang Y-Z (2012) Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Thermochim Acta 529:80–86.  https://doi.org/10.1016/j.tca.2011.11.031 CrossRefGoogle Scholar
  44. 44.
    Luo X, Li J, Feng J, Yang T, Lin X (2014) Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Mater Des 57:195–200.  https://doi.org/10.1016/j.matdes.2013.12.056 CrossRefGoogle Scholar
  45. 45.
    Tang Y-R, Lin D-W, Gao Y, Xu J, Guo BH (2014) Prominent nucleating effect of finely dispersed hydroxyl-functional hexagonal boron nitride on biodegradable poly(butylene succinate). Ind Eng Chem Res 53:4689–4696.  https://doi.org/10.1021/ie403915j CrossRefGoogle Scholar
  46. 46.
    Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498.  https://doi.org/10.1016/j.eurpolymj.2008.05.024 CrossRefGoogle Scholar
  47. 47.
    Krochta JM, Mulder-Johnston C (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol 51:61–74Google Scholar
  48. 48.
    Tensile property testing of plastics. http://www.matweb.com/reference/tensilestrength.aspx. Retrieved October 25, 2015
  49. 49.
    Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004.  https://doi.org/10.1007/s10570-010-9430-x CrossRefGoogle Scholar
  50. 50.
    Li L, Song G, Tang G (2013) Novel biodegradable polylactide/poly (butylene succinate) composites via cross-linking with methylene diphenyl diisocyanate. Polym-Plast Technol Eng 52(12):1183–1187.  https://doi.org/10.1080/03602559.2013.798817 CrossRefGoogle Scholar
  51. 51.
    Tang X (2008) Use of extrusion for synthesis of starch-clay nanocomposites for biodegradable packaging films. Kansas State UniversityGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Grain Science and IndustryKansas State UniversityManhattanUSA
  2. 2.PepsiCo Global Research & DevelopmentPlanoUSA

Personalised recommendations