Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering

  • Tuerdimaimaiti AbudulaEmail author
  • Usman SaeedEmail author
  • Adnan Memic
  • Kalamegam Gauthaman
  • Mohammad Asif Hussain
  • Hamad Al-Turaif


Today, tissue engineered scaffolds made by electrospinning are becoming a central focus of vascular prostheses research due to their ability to assist native tissue recovery. Compared to a single material, multifunctional composite scaffold could provide more suitable microenvironment for the tissue regeneration. In this study, electrospun composite scaffolds are developed by reinforcing a matrix of poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) by cellulose nano-fibrils (CNFs). Initially, PLA/PBS fibrous scaffolds with different ratio were prepared. The best properties and bioactivity of the scaffolds were obtained at equal ratio of PLA and PBS. Overall performance of electrospun scaffolds improved greatly by introduction of CNF into the PLA/PBS scaffolds. The developed composite scaffolds were found to meet some of the essential requirements for vascular tissue regeneration. They showed a uniform fibrous structure with desirable size dimension, cell-friendly surface characteristics, sustainable biodegradation behaviour and sustainable mechanical property compared to native tissue. In addition, the CNF composite scaffolds supported attachment and proliferation of human fibroblast cells more than PLA, PBS or their blends alone. Overall the developed composite scaffolds demonstrated their potency for vascular tissue engineering application.


Electrospinning Composite scaffolds Cellulose nano fibril (CNF) Poly (lactic acid) (PLA) Poly (butylene succinate) (PBS) Biocompatibility 



The authors would also like to acknowledge Ahmed Alshahri, Numan Salah, M. Shahnawaze Ansari, Javed Iqbal, and Florencio Trovela for their technical support.

Compliance with ethical standards

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    World Health Organization (2018) Cardiovascular diseaseGoogle Scholar
  2. 2.
    Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F (2011) Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 63(4):221–241CrossRefGoogle Scholar
  3. 3.
    Benstoem C, Stoppe C, Liakopoulos OJ, Meybohm P, Clayton TC, Yellon DM, Hausenloy DJ, Goetzenich A (2015) Remote ischaemic preconditioning for coronary artery bypass grafting. The Cochrane LibraryGoogle Scholar
  4. 4.
    Seifu DG, Purnama A, Mequanint K, Mantovani D (2013) Small-diameter vascular tissue engineering. Nat Rev Cardiol 10(7):410–421CrossRefGoogle Scholar
  5. 5.
    Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25CrossRefGoogle Scholar
  6. 6.
    O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  7. 7.
    Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9(8):861–888CrossRefGoogle Scholar
  8. 8.
    Cheng JK, Wagenseil JE (2012) Extracellular matrix and the mechanics of large artery development. Biomech Model Mechanobiol 11(8):1169–1186. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yao C-L, Chen J-H, Lee C-H (2017) Effects of various monomers and micro-structure of polyhydroxyalkanoates on the behavior of endothelial progenitor cells and endothelial cells for vascular tissue engineering. J Polym Res 25(3):187. CrossRefGoogle Scholar
  10. 10.
    Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly (butylene succinate)-based polyesters for biomedical applications: a review. Eur Polym J 75:431–460CrossRefGoogle Scholar
  11. 11.
    Hardiansyah A, Tanadi H, Yang M-C, Liu T-Y (2015) Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. J Polym Res 22(4):59. CrossRefGoogle Scholar
  12. 12.
    Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends. J Nanomater 2010:4Google Scholar
  13. 13.
    Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. Journal of Fiber Bioengineering and Informatics 6(1):85–94CrossRefGoogle Scholar
  14. 14.
    Yokohara T, Okamoto K, Yamaguchi M (2010) Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly (L-lactide) and poly (butylene succinate). J Appl Polym Sci 117(4):2226–2232CrossRefGoogle Scholar
  15. 15.
    Bhatia A, Gupta R, Bhattacharya S, Choi H (2007) Compatibility of biodegradable poly (lactic acid)(PLA) and poly (butylene succinate)(PBS) blends for packaging application. Korea-Aust Rheol J 19(3):125–131Google Scholar
  16. 16.
    Kun H, Wei Z, Xuan L, Xiubin Y (2012) Biocompatibility of a novel poly (butyl succinate) and polylactic acid blend. ASAIO J 58(3):262–267CrossRefGoogle Scholar
  17. 17.
    Benítez A, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5(31):16003–16024CrossRefGoogle Scholar
  18. 18.
    Hanif Z, Jeon H, Tran TH, Jegal J, Park S-A, Kim S-M, Park J, Hwang SY, Oh DX (2017) Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. J Polym Res 25(3):191. CrossRefGoogle Scholar
  19. 19.
    Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4(5):327–339CrossRefGoogle Scholar
  20. 20.
    Lundahl MJ, Klar V, Ajdary R, Norberg N, Ago M, Cunha AG, Rojas OJ (2018) Absorbent filaments from cellulose Nanofibril hydrogels through continuous coaxial wet spinning. ACS Appl Mater Interfaces 10(32):27287–27296CrossRefGoogle Scholar
  21. 21.
    Abudula T, Saeed U, Salah N, Memic A, Al-Turaif H (2018) Study of electrospinning parameters and collection methods on size distribution and orientation of PLA/PBS hybrid Fiber using digital image processing. J Nanosci Nanotechnol 18(12):8240–8251CrossRefGoogle Scholar
  22. 22.
    Henriques C, Vidinha R, Botequim D, Borges J, Silva J (2009) A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J Nanosci Nanotechnol 9(6):3535–3545CrossRefGoogle Scholar
  23. 23.
    Na K-H, Kim W-T, Park D-C, Shin H-G, Lee S-H, Park J, Song T-H, Choi W-Y (2018) Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process. Thin Solid Films 660:358–364. CrossRefGoogle Scholar
  24. 24.
    Wang C, Cheng Y-W, Hsu C-H, Chien H-S, Tsou S-Y (2011) How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process. J Polym Res 18(1):111–123. CrossRefGoogle Scholar
  25. 25.
    de Sousa AMF Technical-scientific papers thermal, rheological and morphological properties of poly (lactic acid)(PLA) and talc composites Talita Ferreira Cipriano. Ana Lúcia Nazareth da Silva Instituto de Macromoléculas Professora Eloisa Mano–IMA, Universidade FederalGoogle Scholar
  26. 26.
    Stoyanova N, Paneva D, Mincheva R, Toncheva A, Manolova N, Dubois P, Rashkov I (2014) Poly (l-lactide) and poly (butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater Sci Eng C 41:119–126CrossRefGoogle Scholar
  27. 27.
    Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World ScientificGoogle Scholar
  28. 28.
    Liu W, Dong Y, Liu D, Bai Y, Lu X (2018) Polylactic acid (PLA)/cellulose Nanowhiskers (CNWs) composite nanofibers: microstructural and properties analysis. J Compos Sci 2(1):4CrossRefGoogle Scholar
  29. 29.
    Xie L, Xu H, Li L-B, Hsiao BS, Zhong G-J, Li Z-M (2016) Biomimetic Nanofibrillation in two-component biopolymer blends with structural analogs to spider silk. Sci Rep 6:34572. Accessed 10/10/2018
  30. 30.
    Sommer G, Benedikt C, Niestrawska JA, Hohenberger G, Viertler C, Regitnig P, Cohnert TU, Holzapfel GA (2018) Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion. Acta Biomater 75:235–252. CrossRefPubMedGoogle Scholar
  31. 31.
    Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZD, Dzenis YA (2013) Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7(4):3324–3331. CrossRefPubMedGoogle Scholar
  32. 32.
    Richard-Lacroix M, Pellerin C (2013) Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 46(24):9473–9493. CrossRefGoogle Scholar
  33. 33.
    Snowhill PB, Silver FH (2005) A mechanical model of porcine vascular tissues-part II: stress–strain and mechanical properties of juvenile porcine blood vessels. Cardiovasc Eng 5(4):157–169. CrossRefGoogle Scholar
  34. 34.
    Pan Y, Zhou X, Wei Y, Zhang Q, Wang T, Zhu M, Li W, Huang R, Liu R, Chen J (2017) Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci Rep 7(1):3615CrossRefGoogle Scholar
  35. 35.
    Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 357(1418):121–132. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Akhtar R, Schwarzer N, Sherratt MJ, Watson REB, Graham HK, Trafford AW, Mummery PM, Derby B (2009) Nanoindentation of histological specimens: mapping the elastic properties of soft tissues. J Mater Res 24(3):638–646. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bissell MJ, Turley EA, Nikjoo A, Veiseh M (2014) From microenvironment to Nanoenvironment: ultrastructure and function of extracellular matrix. Nanotechnology and regenerative engineering. CRC Press, pp 56–79Google Scholar
  38. 38.
    Jiang X, Yang JP, Wang XH, Zhou JJ, Li L (2009) The degradation and adsorption behaviors of enzyme on poly (butylene succinate) single crystals. Macromol Biosci 9(12):1281–1286CrossRefGoogle Scholar
  39. 39.
    Morihara K, Tsuzuki H (1975) Specificity of proteinase K from Tritirachium album limber for synthetic peptides. Agric Biol Chem 39(7):1489–1492Google Scholar
  40. 40.
    Tonglairoum P, Ngawhirunpat T, Rojanarata T, Opanasopit P (2015) Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing. Pharm Dev Technol 20(8):976–983CrossRefGoogle Scholar
  41. 41.
    Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. Regenerative medicine and tissue engineering-cells and biomaterials. InTechGoogle Scholar
  42. 42.
    Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–3082. CrossRefPubMedGoogle Scholar
  43. 43.
    Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4(4):045002CrossRefGoogle Scholar
  44. 44.
    Sutthiphong S, Pavasant P, Supaphol P (2009) Electrospun 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) fiber mats and their potential for use as bone scaffolds. Polymer 50(6):1548–1558. CrossRefGoogle Scholar
  45. 45.
    Tallawi M, Rai R, R-Gleixner M, Roerick O, Weyand M, Roether J, Schubert D, Kozlowska A, Fray ME, Merle B Poly (glycerol sebacate)\P oly (butylene succinate-dilinoleate) blends as candidate materials for cardiac tissue engineering. In: Macromol Symp, 2013. vol 1. Wiley Online Library, pp 57–67Google Scholar
  46. 46.
    Lu H, Zhao X, Wang Y, Ding X, Wang J, Garza E, Manow R, Iverson A, Zhou S (2016) Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. BMC Biotechnol 16:19–19. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Garcia-Orue I, Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2016) Chapter 2 - nanotechnology approaches for skin wound regeneration using drug-delivery systems A2 - Grumezescu, Alexandru Mihai. Nanobiomaterials in soft tissue engineering. William Andrew Publishing, pp 31–55. CrossRefGoogle Scholar
  48. 48.
    Ojansivu M, Johansson L, Vanhatupa S, Tamminen I, Hannula M, Hyttinen J, Kellomäki M, Miettinen S (2018) Knitted 3D scaffolds of polybutylene succinate support human mesenchymal stem cell growth and osteogenesis. Stem Cells Int 2018:5928935–5928935. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Braghirolli DI, Steffens D, Pranke P (2014) Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 19(6):743–753. CrossRefPubMedGoogle Scholar
  50. 50.
    Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24. CrossRefGoogle Scholar
  51. 51.
    Yang Z, Si J, Cui Z, Ye J, Wang X, Wang Q, Peng K, Chen W, Chen S-C (2017) Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils. Carbohydr Polym 174:750–759. CrossRefPubMedGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Chemical and Materials Engineering, Faculty of EngineeringKing Abdul Aziz UniversityJeddahSaudi Arabia
  2. 2.Center of NanotechnologyKing Abdul Aziz UniversityJeddahSaudi Arabia
  3. 3.Center of Excellence in Genomic Medicine ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Electrical and Computer Engineering (Biomedical Engineering Option)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations