Advertisement

Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa)

  • Fuminori ItoEmail author
  • Yuriko Nishiyama
  • Shuhong Duan
  • Hidetaka Yamada
ORIGINAL PAPER
  • 46 Downloads

Abstract

In the present study, integrated polymers having gas barrier and water sorption properties were prepared by effectively blending two types of polymers to fabricate membranes for high-performance CO2 separation. Namely, composite polymers were prepared as a new membrane material by uniformly blending polyvinyl alcohol (PVA), a gas barrier polymer, with sodium polyacrylate (PAANa), a water-absorbing polymer. The optimal PVA/PAANa blending ratio was determined by evaluating the thermal properties of the prepared polymer blend and the CO2 separation performance of the polymer blend membrane. When amine type additives such as polyamidoamine (PAMAM) dendrimer or polyallylamine (PAAm) were added to the prepared PVA/PAANa, the separation performance of the produced separation membrane increased. Applying a carbonate coating onto the PVA/PAANa membranes containing additives further increased the separation performance and selectivity of the membranes. These results demonstrated that the PVA/PAANa membranes prepared in this study, which featured both gas barrier and water absorption properties, could be used as high-performance membrane materials for CO2 separation.

Keywords

Polyvinyl alcohol Sodium polyacrylate Blend CO2 separation membrane Additives 

Notes

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant JP17K00634.

References

  1. 1.
    Duan S, Kouketsu T, Kazama S, Yamada K (2006) Development of PAMAM dendrimer composite membranes for CO2 separation. J Membrane Sci 283:2–6CrossRefGoogle Scholar
  2. 2.
    Minelli M, Medri V, Papa E, Miccio F, Landi E (2016) Geopolymers as solid adsorbent for CO2 capture. Chemical Eng Sci 148:267–274CrossRefGoogle Scholar
  3. 3.
    Muchan P, Saiwan C, Narku-Tetteh J, Idem R, Supap T, Tontiwachwuthikui P (2016) Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. Chemical Eng Sci 170:574–582CrossRefGoogle Scholar
  4. 4.
    Kai T, Taniguchi I, Duan S, Chowdhury FA, Saito T, Yamazaki K, Ikeda K, Ohara T, Asano S, Kazama S (2013) Molecular gate membrane: poly (amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture. Energy Procedia 37:961–968CrossRefGoogle Scholar
  5. 5.
    Duan S, Taniguchi I, Kai T, Kazama S (2012) Poly (amidoamine) dendrimer/poly (vinyl alcohol) hybrid membranes for CO2 capture. J Membrane Sci 423–424:107–112CrossRefGoogle Scholar
  6. 6.
    Duan S, Taniguchi I, Kai T, Kazama S (2013) Development of poly (amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures. Energy Procedia 37:924–931CrossRefGoogle Scholar
  7. 7.
    Duan S, Chowdhury FA, Kai T, Kazama S, Fujioka Y (2008) PAMAM dendrimer composite membrane for CO2 separation: addition of hyaluronic acid in gutter layer and application of novel hydroxyl PAMAM dendrimer. Desalination 234:278–285CrossRefGoogle Scholar
  8. 8.
    Car A, Stropnik C, Yave W, Peinemann K-V (2008) PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation. J Membrane Sci 307:88–95CrossRefGoogle Scholar
  9. 9.
    Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H (2015) A compatible crosslinker for enhancement of CO2 capture of poly (amidoamine) dendrimer-containing polymeric membranes. J Membrane Sci 475:175–183CrossRefGoogle Scholar
  10. 10.
    Guerrero G, Venturi D, Peters T, Rival N, Denonville C, Simon C, Henriksen PP, Hägg M-B (2017) Influence of functionalized nanoparticles on the CO2/N2 separation properties of PVA-based gas separation membranes. Energy Procedia 114:627–635CrossRefGoogle Scholar
  11. 11.
    Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: A review. J Environmental Sci 20:14–27CrossRefGoogle Scholar
  12. 12.
    Olajire AA (2010) CO2 capture and separation technology for end-of-pipe applications – a review. Energy 35:2610–2628CrossRefGoogle Scholar
  13. 13.
    D’Alesssandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem 49:6058–6082CrossRefGoogle Scholar
  14. 14.
    Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membrane Sci 359:115–125CrossRefGoogle Scholar
  15. 15.
    Luis P, Gerven TV, Bruggen BVD (2012) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448CrossRefGoogle Scholar
  16. 16.
    Kouketsu T, Duan S, Kai T, Kazama S, Yamada K (2007) PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer. J Membrane Sci 287:51–59CrossRefGoogle Scholar
  17. 17.
    Duan S, Kai T, Taniguchi I, Kazama S (2014) Development of poly (amidoamine) dendrimer/poly(ethyleneglycol) hybrid membranes for CO2 capture at elevated pressures. Energy Procedia 63:167–173CrossRefGoogle Scholar
  18. 18.
    Duan S, Kai T, Saito T, Yamazaki K, Ikeda K (2014) Effect of cross-linking on the mechanical and thermal properties of poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 separation. Membranes 4:200–209CrossRefGoogle Scholar
  19. 19.
    Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H (2007) Selective separation of CO2 by using novel facilitated transport membrane at elevated temperature and pressures. J Membrane Sci 291:157–164CrossRefGoogle Scholar
  20. 20.
    Uemoto T, Sugiura K, Okada O, Nonouchi T, Ito F, Akiyama K, Matsuda K (2013) Proposition of CO2 removable technology using membrane for Hydrogen Station. ECS Trans 51(1):259–264CrossRefGoogle Scholar
  21. 21.
    Carrera MC, Erdmann E, Destéfanis HA (2013) Barrier properties and structural study of nanocomposite of HDPE/montmorillonite modified with Polyvinylalcohol. J Chem  https://doi.org/10.1155/2013/679567 CrossRefGoogle Scholar
  22. 22.
    Cui Y, Kumar S, Kona BR, Houcke DV (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690CrossRefGoogle Scholar
  23. 23.
    Adewole JK, Ahmad AL (2017) Polymeric membrane materials selection for high-pressure CO2 removal from natural gas. J Polym Res 24:70–82CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Chemical research GroupResearch Institute of Innovative Technology for the Earth (RITE)Kizugawa-shi KyotoJapan

Personalised recommendations