Poly[1,3,6,8-tetra(2-thiophenyl)pyrene] and poly[1,3,6,8-tetra(3-thiophenyl)pyrene] conjugated microporous polymers for reversible adsorbing and fluorescent sensing iodine

  • Tongmou GengEmail author
  • Lanzhen Ma
  • Guofeng Chen
  • Can Zhang
  • Weiyong Zhang
  • Hongyu Xia
  • Hai Zhu


Two thiophene- and pyrene-based conjugated microporous polymers poly[1,3,6,8-tetra(2-thiophenyl)pyrene] and poly[1,3,6,8-tetra(3-thiophenyl)pyrene] (PTThP-2 and PTThP-3) were designed and prepared through a FeCl3 oxidative coupling polymerization. The PTThP-2 and PTThP-3 possess considerable BET surface area of over 370.8 m2 g−1 and 748.2 m2 g−1, large pore volume of 0.544 cm3 g−1 and 0.573 cm3 g−1, good stability, and display excellent guest uptake of 1.62 and 2.00 g g−1 in iodine vapour. Furthermore, incorporation of pyrene and thiophene moieties into these polymers can induce high fluorescence in the dispersions of tetrahydrofuran (THF), which make them sensing electron-deficient iodine via fluorescence quenching with the Ksv of 1.99 × 103 and 5.09 × 103 L mol−1, and the limit of detection of 7.54 × 10−8 and 2.95 × 10−8 mol L−1, respectively.


Conjugated microporous polymer Iodine adsorption Fluorescence sensor Pyrene Thiophene 



This work was supported by Natural Science Foundation of Anhui Education Department (under Grant No. KJ2018A0319) and the open fund of AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials (under Grant No. ZD2017007).

Supplementary material

10965_2019_1766_MOESM1_ESM.doc (6.5 mb)
ESM 1 (DOC 6636 kb)


  1. 1.
    Nandanwar SU, Coldsnow K, Utgikar V, Sabharwall P, Aston DE (2016) Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment – A review. Chem Eng J 306:369–381CrossRefGoogle Scholar
  2. 2.
    Sava DF, Rodriguez MA, Chapman KW, Chupas PJ, Greathouse JA, Crozier PS, Nenoff TM (2011) Capture of volatile iodine, a gaseous fission product, by Zeolitic imidazolate framework-8. J Am Chem Soc 133:12398–12401CrossRefGoogle Scholar
  3. 3.
    Pei CY, Ben T, Xu SX, Qiu SL (2014) Ultrahigh iodine adsorption in porous organic frameworks. J Mater Chem A 2:7179–7187CrossRefGoogle Scholar
  4. 4.
    Sigen A, Zhang YW, Li ZP, Xia H, Xue M, Liu XM, Mu Y (2014) Highly efficient and reversible iodine capture using a metalloporphyrin-based conjugated microporous polymer. Chem Commun 50:8495–8498Google Scholar
  5. 5.
    Yan ZJ, Yuan Y, Tian YY, Zhang DM, Zhu GS (2015) Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew Chem Int Ed 54:12733–12737CrossRefGoogle Scholar
  6. 6.
    Li H, Ding XS, Han BH (2016) Porous azo-bridged porphyrin–phthalocyanine network with high iodine capture capability. Chem Eur J 33:11863–11868Google Scholar
  7. 7.
    Chapman KW, Chupas PJ, Nenoff TM, Chapman KW, Chupas PJ (2010) Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J Am Chem Soc 132:8897–8899CrossRefGoogle Scholar
  8. 8.
    Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T (2013) Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chem Commun 49:10320–10322CrossRefGoogle Scholar
  9. 9.
    Ren F, Zhu ZQ, Qian X, Liang WD, Mu P, Sun HX, Liu JH, Li A (2016) Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake. Chem Commun 52:9797–9800CrossRefGoogle Scholar
  10. 10.
    Geng TM, Zhang WY, Zhu ZM, Kai XM (2019) Triazine-based conjugated microporous polymers constructing triphenylamine and its derivatives with nitrogen as core for iodine adsorption and fluorescence sensing I2. Micropor Mesopor Mat 273:163–170CrossRefGoogle Scholar
  11. 11.
    Ma H, Chen JJ, Tan LX, Bu JH, Zhu YH, Tan BE, Zhang C (2016) Nitrogen-rich triptycene-based porous polymer for gas storage and iodine enrichment. ACS Macro Lett 5:1039–1043CrossRefGoogle Scholar
  12. 12.
    Lin Y, Jiang X, Kim ST, Alahakoon SB, Hou X, Zhang Z, Thompson CM, Smaldone RA, Ke C (2017) An Elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 139:7172–7175CrossRefGoogle Scholar
  13. 13.
    Zhu YL, Ji YJ, Wang DG, Zhang Y, Tang H, Jia XR, Song M, Yu GP, Kuang GC (2017) BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture. J Mater Chem A 5(14):6622–6629CrossRefGoogle Scholar
  14. 14.
    Park KC, Cho J, Lee CY (2016) Porphyrin and pyrene-based conjugated microporous polymer for efficient sequestration of CO2and iodine and photosensitization for singlet oxygen generation. RSC Adv 6:75478–75481CrossRefGoogle Scholar
  15. 15.
    Qian X, Zhu ZQ, Sun HX, Ren F, Mu P, Liang WD, Chen LH, Li A (2016) Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units. ACS Appl Mater Interfaces 8:21063–21069CrossRefGoogle Scholar
  16. 16.
    Frost H, Duren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks. J Phys Chem B 110:9565–9570CrossRefGoogle Scholar
  17. 17.
    Millward AR, Yaghi OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRefGoogle Scholar
  18. 18.
    Qiao SL, Du ZK, Huang W, Yang RQ (2014) Influence of aggregated morphology on carbon dioxide uptake of polythiophene conjugated organic networks. J Solid State Chem 212:69–72Google Scholar
  19. 19.
    Kundu DS, Schmidt J, Bleschke C, Thomas A, Blechert S (2012) A microporous binol-derived phosphoric acid. Angew Chem In Ed 51:5456–5459CrossRefGoogle Scholar
  20. 20.
    Hu XM, Chen Q, Sui ZY, Zhao ZQ, Bovet N, Laursen BW, Han BH (2015) Triazatriangulenium-based porous organic polymers for carbon dioxide capture. RSC Adv 5:90135–90143CrossRefGoogle Scholar
  21. 21.
    Hu XM, Chen Q, Sui ZY, Zhao ZQ, Bovet N, Laursen BW, Han BH (2015) Triazatriangulenium-based porous organic polymers for carbon dioxide capture. RSC Adv 5:90135–90143Google Scholar
  22. 22.
    Chen Q, Wang JX, Yang F, Zhou D, Bian N, Zhang XJ, Yan CG, Han BH (2011) Tetraphenylethylene-based fluorescent porous organic polymers: preparation, gas sorption properties and photoluminescence properties. J Mater Chem 21:13554–13560CrossRefGoogle Scholar
  23. 23.
    Yuan S, Kirklin S, Dorney B, Liu DJ, Yu L (2009) Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 42:1554–1559CrossRefGoogle Scholar
  24. 24.
    Xia JB, Yuan SW, Wang Z, Kirklin S, Dorney B, Liu DJ, Yu LP (2010) Nanoporous polyporphyrin as adsorbent for hydrogen storage. Macromolecules 43:3325–3330CrossRefGoogle Scholar
  25. 25.
    Jiang MY, Wang Q, Chen Q, Hu XM, Ren XL, Li ZH, Han BH (2013) Preparation and gas uptake of microporous organic polymers based on binaphthalene-containing spirocyclic tetraether. Polymer 54:2952–2957CrossRefGoogle Scholar
  26. 26.
    Palma-Cando A, Brunklaus G, Scherf U (2015) Thiophene-based microporous polymer networks via chemical or electrochemical oxidative coupling. Macromolecules 48:6816–6824CrossRefGoogle Scholar
  27. 27.
    Geng TM, Zhu ZM, Wang X, Xia HY, Wang Y, Li DK (2017) Poly{tris[4-(2-Thienyl)phenyl]amine} fluorescent conjugated microporous polymer for selectively sensing picric acid. Sensor Act B-Chem 244:334–343CrossRefGoogle Scholar
  28. 28.
    Suresh VM, Bandyopadhyay A, Roy S, Pati SK, Maji TK (2015) Highly luminescent microporous organic polymer with Lewis acidic boron sites on the pore surface: ratiometric sensing and capture of F−ions. Chem Eur J 21:10799–10804CrossRefGoogle Scholar
  29. 29.
    Jiang JX, Trewin A, Adams DJ, Cooper AI (2011) Band gap engineering in fluorescent conjugated microporous polymers. Chem Sci 2:1777–1781CrossRefGoogle Scholar
  30. 30.
    Liu XM, Xu YH, Jiang DL (2012) Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J Am Chem Soc 134:8738–8741CrossRefGoogle Scholar
  31. 31.
    Liu XM, Xu YH, Jiang DL (2012) Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J Am Chem Soc 134:8738−8741Google Scholar
  32. 32.
    Ahmed DS, El-Hiti GA, Yousif AAA, Hameed AS (2018) Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. J Polym Res 25(3):75CrossRefGoogle Scholar
  33. 33.
    Ghasimi S, Landfester K, Zhang KAI (2016) Water compatible conjugated microporous polyazulene networks as visible-light photocatalysts in aqueous medium. ChemCatChem 8:694–698CrossRefGoogle Scholar
  34. 34.
    Zhuang XD, Gehrig D, Forler N, Liang HW, Wagner M, Hansen MR, Laquai F, Zhang F, Feng XL (2015). Adv Mater 25:3789–3796CrossRefGoogle Scholar
  35. 35.
    Ji G, Yang Z, Zhao Y, Zhang H, Yu B, Xu J, Xu H, Liu Z (2015) Synthesis of metalloporphyrin-based conjugated microporous polymer spheres directed by bipyridine-type ligands. Chem Commun 51:7352–7355CrossRefGoogle Scholar
  36. 36.
    Sun LB, Liang ZQ, Yu JH, Xu RR (2013) Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction. Polym Chem 4:1932–1938CrossRefGoogle Scholar
  37. 37.
    Zhang YW, Sigen A, Zou YC, Luo XL, Li ZP, Xia H, Liu XM, Mu Y (2014) Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer. J Mater Chem A 2:13422–13430CrossRefGoogle Scholar
  38. 38.
    Schmidt J, Weber J, Epping JD, Antonietti M, Thomas A (2009) Microporous conjugated poly(thienylene arylene) networks. Adv Mater 21:702–705CrossRefGoogle Scholar
  39. 39.
    Chen YF, Sun HX, Yang RX, Wang TT, Pei CJ, Xiang ZT, Zhu ZQ, Liang WD, Li A, Deng WQ (2015) Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2uptake. J Mater Chem A 3:87–91CrossRefGoogle Scholar
  40. 40.
    Dang QQ, Wang XM, Zhan YF, Zhang XM (2016) An azo-linked porous triptycene network as an absorbent for CO2 and iodine uptake. Polym Chem 7:643–647CrossRefGoogle Scholar
  41. 41.
    Yao RX, Cui X, Jia XX, Zhang FQ, Zhang XM (2016) A luminescent zinc(II) metal–organic framework (MOF) with conjugated π-electron ligand for high iodine capture and nitro-explosive detection. Inorg Chem 55:9270–9275CrossRefGoogle Scholar
  42. 42.
    Liao YZ, Weber J, Mills BM, Ren ZH, Fau CFJ (2016) Highly efficient and reversible iodine capture in hexaphenylbenzene based conjugated microporous polymers. Macromolecules 49:6322–6333CrossRefGoogle Scholar
  43. 43.
    Das G, Prakasam T, Nuryyeva S, Han DS, Abdel-Wahab A, Olsen JC, Polychronopoulou K, Platas-Iglesias C, Ravaux F, Jouiad M, Trabolsi A (2016) Multifunctional redox-tuned viologen-based covalent organic polymers. J Mater Chem A 4:15361–15369CrossRefGoogle Scholar
  44. 44.
    Weng JY, Xu YL, Song WC, Zhang YH (2016) Tuning the adsorption and fluorescence properties of aminal-linked porous organic polymers through N-heterocyclic group decoration. J Polym Sci Part A: Polym Chem 54:1724–1730CrossRefGoogle Scholar
  45. 45.
    Xiang ZH, Cao DP (2012) Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. Macromol Rapid Commun 33:1184–1190CrossRefGoogle Scholar
  46. 46.
    Bhunia S, Chatterjee N, Das S, Saha KD, Bhaumik A (2014) Aggregation induced white light emission, applications as biosensor and scaffold for drug delivery. ACS Appl Mater Interfaces 6:22569−22576Google Scholar
  47. 47.
    Sun LB, Liang ZQ, Yu JH (2015) Octavinylsilsesquioxane-based luminescent nanoporous inorganic–organic hybrid polymers constructed by the Heck coupling reaction. Polym Chem 6:917–924CrossRefGoogle Scholar
  48. 48.
    Ma DX, Li BY, Cui ZH, Liu K, Chen CL, Li GH, Hu J, Ma BH, Shi Z, Feng SH (2016) Multifunctional luminescent porous organic polymer for selectively detecting iron ions and 1,4-dioxane via luminescent turn-off and turn-on sensing. ACS Appl Mater Interfaces 8:24097−24103Google Scholar
  49. 49.
    Wu XF, Li HB, Xu YX, Tong H, Wang LX (2015) Intramolecular charge-transfer emission from conjugated polymer nanoparticles: the terminal group effect on electronic and optical properties. Polym Chem 6:2305–2311CrossRefGoogle Scholar
  50. 50.
    Guo L, Zeng XF, Cao DP (2016) Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform: Functional group effects. Sensor Act B-Chem 226:273–278Google Scholar
  51. 51.
    Bandyopadhyay S, Pallavi P, Patra AGAA (2015) Fabrication of porous organic polymers in the form of powder, soluble in organic solvents and nanoparticles: a unique platform for gas adsorption and efficient chemosensing. Polym Chem 6:3775–3780CrossRefGoogle Scholar
  52. 52.
    Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of Mercury(II). J Am Chem Soc 138:3031–3037Google Scholar
  53. 53.
    Wang DX, Feng SY, Liu HZ (2016) Fluorescence-tuned polyhedral oligomeric silsesquioxane-based porous polymers. Chem Eur J 22:14319–14327CrossRefGoogle Scholar
  54. 54.
    Deshmukh A, Bandyopadhyay S, James A (2016) Trace level detection of nitroanilines using a solution processable fluorescent porous organic polymer. Patra A J Mater Chem C 4:4427–4433Google Scholar
  55. 55.
    Guo L, Cao DP, Yun J, Zeng XF (2017) Highly selective detection of picric acid from multicomponent mixtures of nitro explosives by using COP luminescent probe. Sensor Act B-Chem 243:753–760CrossRefGoogle Scholar
  56. 56.
    Räupke A, Palma-Cando A, Shkura E, Teckhausen P, Polywka A, Görrn P, Scherf U, Riedl T (2016) Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks. Sci Rep 6:29118CrossRefGoogle Scholar
  57. 57.
    Li YK, Bi SM, Liu F, Wu SY, Hu J, Wang LM, Liu HL, Hu Y (2015) Porosity-induced emission: exploring color-controllable fluorescence of porous organic polymers and their chemical sensing applications. J Mater Chem C 3:6876–6881CrossRefGoogle Scholar
  58. 58.
    Gu C, Huang N, Wu Y, Xu H, Jiang DL (2015) Design of highly photofunctional porous polymer films with controlled thickness and prominent microporosity. Angew Chem Int Ed 54:11540–11544CrossRefGoogle Scholar
  59. 59.
    Geng TM, Wu DY, Huang W (2015) Dual turn-on fluorescent chemosensor for Cu2+ and Hg2+ in aqueous medium based on a water-soluble polyacrylamide containing rhodamine. J Polym Res 22(3):40CrossRefGoogle Scholar
  60. 60.
    Geng TM, Wu DY, Huang W, Huang RY, Wu GH (2014) Fluorogenic detection of Hg2+, Cd2+, Fe2+, Pb2+ cations in aqueous media by means of an acrylamide-acrylic acid copolymer chemosensor with pendant rhodamine-based dyes. J Polym Res 21(3):354–361Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Tongmou Geng
    • 1
    Email author
  • Lanzhen Ma
    • 1
  • Guofeng Chen
    • 1
  • Can Zhang
    • 1
  • Weiyong Zhang
    • 1
  • Hongyu Xia
    • 1
  • Hai Zhu
    • 1
  1. 1.AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education InstitutesAnqing Normal UniversityAnqingChina

Personalised recommendations