Advertisement

Effect of reactive group types on the properties of poly(ethylene octane) toughened poly(lactic acid)

  • Yanping Hao
  • Zhigang Liu
  • Huiliang Zhang
  • Yandong Wu
  • Yang Xiao
  • Yi LiEmail author
  • Yi TongEmail author
ORIGINAL PAPER
  • 7 Downloads

Abstract

In this work, maleic anhydride (MA) and glycidyl methacrylate (GMA) grafted poly(ethylene octane) (MPOE and GPOE) were used to toughen poly(lactic acid) (PLA). Results exhibited that the MA and GMA strongly influenced the morphology and mechanical properties of PLA. The stronger interfacial reactions between the carboxyl and/or hydroxyl of PLA and epoxy groups of GPOE induced smaller dispersed phase sizes and higher impact strength than that of PLA/MPOE blends. SEM results showed that the shear yielding properties of the PLA matrix and cavitation of rubber particles were major toughening mechanisms. Rheological investigation indicated that the PLA/GPOE blends had higher storage modulus and complex viscosity at low angular frequencies range due to the high interfacial adhesion between PLA and GPOE. The results of DMA showed that all the PLA blends had lower storage modulus due to the low stiffness of the elastomers. Compared MPOE, the addition of GPOE significantly decreased the cold crystallization and melting temperature which indicated that GPOE could enhance the crystalline ability of PLA.

Keywords

Polylactide Toughening Morphology Mechanical properties Rheology Thermal brehavior 

Notes

References

  1. 1.
    Chiu HT, Huang SY, Chen YF, Kuo MT, Chiang TY, Chang CY, Wang YH (2013) Heat treatment effects on the mechanical properties and morphologies of poly (Lactic Acid)/poly (Butylene Adipate-co-terephthalate) blends. Inter J Polym Sci.  https://doi.org/10.1155/2013/951696 CrossRefGoogle Scholar
  2. 2.
    Sheth M, R. Kumar A, Davé V, Gross RA, Mccarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly (ethylene glycol). J Appl Polym Sci 66: 1495-1505Google Scholar
  3. 3.
    Paul MA, Alexandre M, Degée P, Henrist C, Rulmont A, Dubois P (2002) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450CrossRefGoogle Scholar
  4. 4.
    Ma X, GaoYJ WN (2006) Compatibility characterization of poly(lactic acid)/ poly(propylene carbonate) blends. J Polym Sci B 44:94–101CrossRefGoogle Scholar
  5. 5.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  6. 6.
    Slomkowski S, Penczek S, Duda A (2014) Polylactides & mdash; an overview. Polym Adv Tech 25:436–447CrossRefGoogle Scholar
  7. 7.
    Li FJ, Zhang SD, Wang JZ (2015) Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym Adv Tech 26:465–475CrossRefGoogle Scholar
  8. 8.
    Martino VP, Jimtino A, Ruseckaite RA, Avsecka L (2011) Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polym Adv Tech 22:2206–2213CrossRefGoogle Scholar
  9. 9.
    Deng Y, Thomas NL (2015) Blending poly(butylene succinate) with poly(lactic acid): Ductility and phase inversion effects. Eur Polym J 71:534–546CrossRefGoogle Scholar
  10. 10.
    Zhang CM, Huang Y, Luo CH, Jiang L, Dan Y (2013) Enhanced ductility of polylactide materials: reactive blending with pre-hot sheared natural. J Polym Res 20:121–128CrossRefGoogle Scholar
  11. 11.
    Yang J, Pan HW, Li X, Sun SL, Zhang HL, Dong LS (2017) A study on the mechanical, thermal properties and crystallization behavior of poly(lactic acid)/thermoplastic poly(propylene carbonate) polyurethane blends. RSC Adv 7:46183–46194CrossRefGoogle Scholar
  12. 12.
    Rasal RM, Hirt DE (2010) Poly(lactic acid) toughening with a better balance of properties. Macromol Mater Eng 295:204–209CrossRefGoogle Scholar
  13. 13.
    Krishnan S, Mohanty S, Nayak SK (2018) An eco-friendly approach for toughening of polylactic acid from itaconic acid based elastomers. J Polym Res 25:10–17CrossRefGoogle Scholar
  14. 14.
    Peng NG, Ju YH, Lv RH, Na B, Liu QX, Wang B (2016) Toughening biodegradable polylactide with nanopores. J Polym Res 23:261–267CrossRefGoogle Scholar
  15. 15.
    Hao YP, Liang HY, Bian JJ, Sun SL, Zhang HL, Dong LS (2014) Toughening of polylactide with epoxy-functionalized methyl methacrylate-butadiene copolymer. Polym Int 63:660–666CrossRefGoogle Scholar
  16. 16.
    Creton C, Kramer EJ, Hui CY, Brown HR (1992) Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25:3075–3088CrossRefGoogle Scholar
  17. 17.
    Kim JK, Lee H (1996) The effect of PS-GMA as an in situ compatibilizer on the morphology and rheological properties of the immiscible PBT/PS blend. Polymer 37:305–311CrossRefGoogle Scholar
  18. 18.
    Jeon HK, Kim JK (1998) Morphological development with time for immiscible polymer blends with an in situ compatibilizer under controlled shear conditions. Polymer 39:6227–6234CrossRefGoogle Scholar
  19. 19.
    Cecere A, Greco R, Ragosta G, Scarinzi G, Taglialatela A (1990) Rubber toughened polybutylene terephthalate: influence of processing on morphology and impact properties. Polymer 31:1239–1244CrossRefGoogle Scholar
  20. 20.
    Sun YJ, Hu GH, Lambla M, Kotlar HK (1996) In situ compatibilization of polypropylene and poly(butylene terephthalate) polymer blends by one-step reactive extrusion. Polymer 37:4119–4127CrossRefGoogle Scholar
  21. 21.
    Hu GH, Sun YJ, Lambla M (1996) Devolatilization: A critical sequential operation for in situ compatibilization of immiscible polymer blends by one-step reactive extrusion. Polym Eng Sci 36:676–684CrossRefGoogle Scholar
  22. 22.
    Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50:747–751CrossRefGoogle Scholar
  23. 23.
    Sun SL, Zhang MY, Zhang HX, Zhang XM (2011) Polylactide toughening with epoxy-functionalized grafted acrylonitrile-butadiene-styrene particles. J Appl Polym Sci 122:2992–2999CrossRefGoogle Scholar
  24. 24.
    Li W, Wu DD, Sun SL, Wu GF, Zhang HX, Deng YJ, Zhang HL, Dong LS (2014) Toughening of polylactide with epoxy-functionalized methyl methacrylate-butyl acrylate copolymer. Polym Bull 71:2881–2902CrossRefGoogle Scholar
  25. 25.
    Arostegui A, Gaztelumendi M, Nazabal J (2001) Toughened poly(butylene terephthalate) by blending with a metallocenic poly(ethylene-octene) copolymer. Polymer 42:9565–9574CrossRefGoogle Scholar
  26. 26.
    Yang L, Zhang AQ, Wang LS, Chen RM, Zeng YT, Wu WZ (2013) Study on toughening effect of maleic anhydride-grafted-poly(ethylene-octene) to EVOH and their compatibility. Polym Eng Sci 53:2093–2101Google Scholar
  27. 27.
    Yu ZZ, Ke YC, Ou YC, Hu GH (2015) Influence of interfacial adhesion on toughening of polyethylene-octene elastomer/nylon 6 blends. J Appl Polym Sci 69:1711–1718CrossRefGoogle Scholar
  28. 28.
    Yu ZZ, Ke YC, Ou YC, Hu GH (2015) Impact fracture morphology of nylon 6 toughened with a maleated polyethylene-octene elastomer. J Appl Polym Sci 76:1285–1295CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Zhang Y, Li ZL, Pan HW, Dong QL, Han LJ, Zhang HL, Dong LS (2016) Rheology, mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly(ethylene octene) toughened poly(lactic acid) blends. Korean J Chem Eng 33:1104–1114CrossRefGoogle Scholar
  30. 30.
    Feng YL, Hu YX, Yin JH, Zhao GY, Jiang W (2013) High impact poly(lactic acid)/poly(ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53:389–396CrossRefGoogle Scholar
  31. 31.
    Su Z, Li Q, Liu Y, Hu GH, Wu C (2009) Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane). Eur Polym J 45:2428–2433CrossRefGoogle Scholar
  32. 32.
    Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym Sci 4:980–990Google Scholar
  33. 33.
    Zuo M, Zheng Q (2008) Correlation between rheological behavior and structure of multi-component polymer system. Sci China Ser B Chem 51:1–12CrossRefGoogle Scholar
  34. 34.
    Schramm G (1994) A practical approach to rheology and rheometry. Gebrueder HAAKE GebH, Karlsruhe, GermanyGoogle Scholar
  35. 35.
    van Bruggen EPA, Koster RP, Picken SJ, Ragaert K (2016) Influence of processing parameters and composition on the effective compatibilization of polypropylene-poly(ethylene terephthalate) blends. Int Polym Proc (2):179–187Google Scholar
  36. 36.
    Acik E, Orbey N, Yilmazer U (2015) Rheological properties of poly(lactic acid) based nanocomposites: Effects of different organoclay modifiers and compatibilizers. J Appl Polym Sci 133:1–10Google Scholar
  37. 37.
    Auras R, Harte BR, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plast Film Sheet 19:123–135CrossRefGoogle Scholar
  38. 38.
    Drieskens M, Peeters R, Mullens J, Franco D, Lemstra PJ, Hristova-Bogaerds DGJ (2009) Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. Polym Sci Polym Phys 47:2247–2258CrossRefGoogle Scholar
  39. 39.
    Colomines G, Domenek S, Ducruet V, Guinault A (2008) Influences of the crystallization rate on thermal and barrier properties of polylactide acid (PLA) food packaging films. Int J Mater Form 1:607–610CrossRefGoogle Scholar
  40. 40.
    HaoYP YHL, Pan HW, Ran XH, Zhang HL (2018) The effect of MBS on the heat resistant, mechanical properties, thermal behavior and rheological properties of PLA/EVOH blend. J Polym Res 25:1–9CrossRefGoogle Scholar
  41. 41.
    Mat Taib R, Ghaleb ZA, Ishak ZAM (2011) Thermal, mechanical, and morphological properties of polylactic acid toughened with an impact modifier. J Appl Polym Sci 123:2715–2725CrossRefGoogle Scholar
  42. 42.
    Ali F, Chang YW, Kang SC, Yoon JY (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62:91–98CrossRefGoogle Scholar
  43. 43.
    Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357CrossRefGoogle Scholar
  44. 44.
    Yasuniwa M, Sakamo K, Ono Y, Kawahara W (2008) Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer 49:1943–1951CrossRefGoogle Scholar
  45. 45.
    Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphism and isomorphism in biodegradable polyesters. Macromolecules 40:6898–6905CrossRefGoogle Scholar
  46. 46.
    Pan P, Liang Z, Zhu B, Dong T, Inoue Y (2009) Blending effects on polymorphic crystallization of poly(L-lactide). Macromolecules 42:3374–3380CrossRefGoogle Scholar
  47. 47.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly (l-lactic Acid). Macromolecules 40:9463–9469CrossRefGoogle Scholar
  48. 48.
    Pan PJ, Liang ZC, Cao AM, Inoue Y (2009) Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.National Engineering Research Center of Corn Deep ProcessingJilin COFCO Biochemistry Co., Ltd.ChangchunChina
  2. 2.Key Laboratory of Polymer Ecomaterials, Chinese Academy of SciencesChangchun Institute of Applied ChemistryChangchunPeople’s Republic of China

Personalised recommendations