Advertisement

Nafion®/ sulfated zirconia oxide-nanocomposite membrane: the effects of ammonia sulfate on fuel permeability

  • Rudzani SigwadiEmail author
  • Touhami Mokrani
  • Mokhotjwa S. Dhlamini
  • Patrick Nonjola
  • Phumlani F. Msomi
ORIGINAL PAPER

Abstract

Nafion®/sulfated zirconium nanocomposite membranes were prepared by incorporating sulfonated zirconia with ammonia sulfate and sulphuric acid, which enhances proton conductivity and reduces fuel crossover on Nafion® membrane as they sustain water affinity and strong acidity. XRD, AFM, SEM, FTIR and TGA were used to investigate the morphology and high temperature degradation of nanocomposite membranes compared with commercial Nafion® 117 membrane. The results show that nanocomposite membranes have low water content angle, improved thermal degradation and higher conductivity than commercial Nafion® 117 membrane, which holds great promise for fuel cell application. The Nafion®/ sulfated zirconia nanocomposite membrane obtained a higher IEC and water uptake due to the presence of SO42− providing extra acid sites for water diffusion. The proton conductivity calculated from impedance spectroscopy measurements were 7.891 S/cm and 0.146 S/cm, respectively, when compared with 0.113 S/cm of commercial Nafion® 117 membrane. The Nafion®/sulfated zirconium nanocomposite membranes showed a highest power density of 183 m. cm−2 when evaluated using a direct single cell methanol fuel cell.

Keywords

Ammonia sulfate Fuel cell Proton conductivity Polymer composite Nafion membrane 

Notes

Acknowledgements

The authors would like to acknowledge and thank the National Research Foundation of South Africa (NRF) and University of South Africa (AQIP) for their financial support. We are also thankful to the CSIR and University of Johannesburg for analysis and performance studies.

References

  1. 1.
    Service RF (2002) Fuel cells. Shrinking fuel cells promise power in your pocket. Science (New York, NY) 296:1222CrossRefGoogle Scholar
  2. 2.
    Savadogo O (2004) Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161CrossRefGoogle Scholar
  3. 3.
    Santiago E, Isidoro R, Dresch M, Matos B, Linardi M, Fonseca F (2009) Nafion–TiO 2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRefGoogle Scholar
  4. 4.
    Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRefGoogle Scholar
  5. 5.
    Savadogo O (1998) Emerging membrane for electrochemical systems:(I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–66Google Scholar
  6. 6.
    Kong X (2010) Characterization of proton exchange materials for fuel cells by solid state nuclear magnetic resonanceGoogle Scholar
  7. 7.
    Ghassemzadeh L, Pace G, Di Noto V, Müller K (2011) Effect of SiO 2 on the dynamics of proton conducting [Nafion/(SiO 2) X] composite membranes: a solid-state 19 F NMR study. Phys Chem Chem Phys 13:9327–9334CrossRefGoogle Scholar
  8. 8.
    Xu W, Lu T, Liu C, Xing W (2005) Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim Acta 50:3280–3285CrossRefGoogle Scholar
  9. 9.
    Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRefGoogle Scholar
  10. 10.
    Navarra M, Abbati C, Scrosati B (2008) Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources 183:109–113CrossRefGoogle Scholar
  11. 11.
    Chen X-R, Ju Y-H, Mou C-Y (2007) Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J Phys Chem C 111:18731–18737CrossRefGoogle Scholar
  12. 12.
    Mercera P, Van Ommen J, Doesburg E, Burggraaf A, Ross J (1992) Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. J Mater Sci 27:4890–4898CrossRefGoogle Scholar
  13. 13.
    Sigwadi R, Dhlamini M, Mokrani T, Nonjola P (2017) Effect of synthesis temperature on particles size and morphology of zirconium oxide nanoparticle. J Nanopart Res 50:18–31CrossRefGoogle Scholar
  14. 14.
    Sigwadi RA, Mavundla SE, Moloto N, Mokrani T (2016) Synthesis of zirconia-based solid acid nanoparticles for fuel cell application. J Energy Southern Africa 27:60–67CrossRefGoogle Scholar
  15. 15.
    Vaivars G, Mokrani T, Hendricks N, Linkov V (2004) Inorganic membranes based on zirconium phosphate for fuel cells. J Solid State Electrochem 8:882–885CrossRefGoogle Scholar
  16. 16.
    Sigwadi R, Ṋemavhola F, Dhlamini S, Mokrani T (2018) Mechanical strength of Nafion®/ZrO2 Nano-composite membrane. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) 8:54–65CrossRefGoogle Scholar
  17. 17.
    Yu H, Ziegler C, Oszcipok M, Zobel M, Hebling C (2006) Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51:1199–1207CrossRefGoogle Scholar
  18. 18.
    Fu R-Q, Woo J-J, Seo S-J, Lee J-S, Moon S-H (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sources 179:458–466CrossRefGoogle Scholar
  19. 19.
    Wu L, Zhou G, Liu X, Zhang Z, Li C, Xu T (2011) Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. J Membr Sci 371:155–162CrossRefGoogle Scholar
  20. 20.
    Di Noto V, Gliubizzi R, Negro E, Pace G (2006) Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2) x] composite membranes. J Phys Chem B 110:24972–24986CrossRefGoogle Scholar
  21. 21.
    Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N (2007) Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder. Ceram Int 33:1275–1282CrossRefGoogle Scholar
  22. 22.
    Stevens WJ, Meynen V, Bruijn E, Lebedev OI, Van Tendeloo G et al (2008) Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates. Microporous Mesoporous Mater 110:77–85CrossRefGoogle Scholar
  23. 23.
    Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRefGoogle Scholar
  24. 24.
    Li L, Pan Y, Chen L, Li G (2007) One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem 180:2896–2904CrossRefGoogle Scholar
  25. 25.
    Starkweather Jr HW (1982) Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 15:320–323CrossRefGoogle Scholar
  26. 26.
    Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRefGoogle Scholar
  27. 27.
    Kyu T, Hashiyama M, Eisenberg A (1983) Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can J Chem 61:680–687CrossRefGoogle Scholar
  28. 28.
    Zhai Y, Zhang H, Hu J, Yi B (2006) Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. J Membr Sci 280:148–155CrossRefGoogle Scholar
  29. 29.
    Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560CrossRefGoogle Scholar
  30. 30.
    Zheng H, Mathe M (2011) Enhanced conductivity and stability of composite membranes based on poly (2, 5-benzimidazole) and zirconium oxide nanoparticles for fuel cells. J Power Sources 196:894–898CrossRefGoogle Scholar
  31. 31.
    James P, Elliott J, McMaster T, Newton J, Elliott A et al (2000) Hydration of Nafion® studied by AFM and X-ray scattering. J Mater Sci 35:5111–5119CrossRefGoogle Scholar
  32. 32.
    Velayutham P, Sahu AK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259CrossRefGoogle Scholar
  33. 33.
    Li KYG, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31CrossRefGoogle Scholar
  34. 34.
    Sigwadi R, Dhlamini M, Mokrani T, ṊEMAVHOLA F (2017) Wettability and mechanical STRENGTH of modified NAFION® nanocomposite membrane for fuel cell. Digest Journal of Nanomaterials & Biostructures (DJNB):12Google Scholar
  35. 35.
    Msomi PF, Ndungu PG, Ramontja J (2018) Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. J Polym Res 25:143–154Google Scholar
  36. 36.
    Sacca AGI, Carbone A, Pedicini R, Passalacqua E (2006) ZrO 2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sources 163:47–51CrossRefGoogle Scholar
  37. 37.
    D’Epifanio A, Navarra MA, Weise FC, Mecheri B, Farrington J et al (2009) Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics. Chem Mater 22:813–821CrossRefGoogle Scholar
  38. 38.
    Zheng J, Bi W, Dong X, Zhu J, Mao H, Li S, Zhang S (2016) High performance tetra-sulfonated poly (p-phenylene-co-aryl ether ketone) membranes with microblock moieties for passive direct methanol fuel cells. J Membr Sci 517:47–56CrossRefGoogle Scholar
  39. 39.
    Zhao D, Yi B, Zhang H, Yu H (2010) MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes. J Membr Sci 346:143–151CrossRefGoogle Scholar
  40. 40.
    Chien H-C, Tsai L-D, Huang C-P, C-y K, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801CrossRefGoogle Scholar
  41. 41.
    Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S (2009) Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications. Microporous Mesoporous Mater 118:427–434CrossRefGoogle Scholar
  42. 42.
    Lee CH, Hwang SY, Sohn JY, Park HB, Kim JY, Lee YM (2006) Water-stable crosslinked sulfonated polyimide–silica nanocomposite containing interpenetrating polymer network. J Power Sources 163:339–348CrossRefGoogle Scholar
  43. 43.
    Ren SSG, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726CrossRefGoogle Scholar
  44. 44.
    Yuan JZG, Pu H (2008) Preparation and properties of Nafion®/hollow silica spheres composite membranes. J Membr Sci 325:742–748CrossRefGoogle Scholar
  45. 45.
    Chen ZHB, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675CrossRefGoogle Scholar
  46. 46.
    Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12CrossRefGoogle Scholar
  47. 47.
    Parthiban VSAK, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10:259–271CrossRefGoogle Scholar
  48. 48.
    Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101CrossRefGoogle Scholar
  49. 49.
    Hasani-Sadrabadi MMDE, Mokarramd N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53:2643–2651CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of South AfricaFloridaSouth Africa
  2. 2.Department of Chemical EngineeringUniversity of South AfricaTshwaneSouth Africa
  3. 3.Department of PhysicsUniversity of South AfricaFloridaSouth Africa
  4. 4.CSIR (Material Science & Manufacturing)PretoriaSouth Africa
  5. 5.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations