Advertisement

Promotion of zeolite as dispersion support for properties improvement of α nucleating agent in polypropylene

  • Xin MengEmail author
  • Chuangchuang Tong
  • Zhong Xin
  • Weiguang Gong
  • Yaoqi Shi
  • Weijie Chen
  • Yan Sheng
ORIGINAL PAPER
  • 22 Downloads

Abstract

The effects of a combined system consisting of zeolite13X (Z13X) and the α nucleating agent sodium 2,2′-methylene-bis(4,6-di-tertbutylphenyl)-phosphate (NA-11) on the mechanical and crystallization properties of polypropylene (iPP) were studied in detail. The results show that the addition of Z13X to iPP/NA-11 not only increases the mechanical properties of iPP, but also accelerates its crystallization. In particular, at a weight ratio of 4:6 NA-11/Z13X and at a total amount of 0.2 wt%, the tensile strength and flexural modulus of iPP/NA-11/Z13X reach 37.9 MPa and 1896 MPa, respectively, and the crystallization temperature of the iPP/NA-11/Z13X system is 130.2 °C. Furthermore, a comparison of POM and mapping photographs of iPP/NA-11/Z13X and iPP/NA-11 indicate that the presence of Z13X increases the dispersion of NA-11 via hydrogen bonding (as evidenced by FT-IR) and accelerates the crystallization rate. The combined system consisting of Z13X and NA-11, with a lower concentration of NA-11(0.08 wt%), exhibits a similar crystallization ability compared to that of only NA-11 (0.2 wt%).

Keywords

Zeolite Isotactic polypropylene Nucleating agent Dispersion Hydrogen bond 

Notes

Acknowledgements

The authors are grateful to the financial support provided by the National Natural Science Funds of China (Grant No. 21776079), and the financial support of the Ministry of Science and Technology of the People’s Republic of China (The People’s Republic of China 863 Program [Grant No. 2015AA034003]). The authors thank Research Center of Analysis and Test of East China University of Science and Technology for the help on the characterization.

References

  1. 1.
    Li Y, Pan C, Xin Z, Zhou S, Meng X, Zhao S (2018) Rheological, crystallization and foaming behaviors of high melt strength polypropylene in the presence of polyvinyl acetate. J Polym Res 25(2):46CrossRefGoogle Scholar
  2. 2.
    Chen Y, Chen Q, Lv Y, Huang Y, Yang Q, Liao X (2015) Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods. J Polym Res 22(6):1–11CrossRefGoogle Scholar
  3. 3.
    Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M (2001) Modeling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer 42(7):3171–3182CrossRefGoogle Scholar
  4. 4.
    Drongelen MV, Erp TBV, Peters GWM (2012) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer 53(21):4758–4769CrossRefGoogle Scholar
  5. 5.
    Ning N, Zhang W, Yan J, Xu F, Wang T, Su H, Tang C, Fu Q (2013) Largely enhanced crystallization of semi-crystalline polymer on the surface of glass fiber by using graphene oxide as a modifier. Polymer 54(1):303–309CrossRefGoogle Scholar
  6. 6.
    Wang L, Hikima Y, Ishihara S, Ohshima M (2017) Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents. Polymer 128:119–127.  https://doi.org/10.1016/j.polymer.2017.09.025 CrossRefGoogle Scholar
  7. 7.
    Arvidson SA, Khan SA, Gorga RE (2010) Mesomorphic−α-monoclinic phase transition in isotactic polypropylene: a study of processing effects on structure and mechanical properties. Macromolecules 43(6):2916–2924CrossRefGoogle Scholar
  8. 8.
    Zhang YF, Li X, Wei XS (2010) Non-isothermal crystallization kinetics of isotactic polypropylene nucleated with 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol. J Therm Anal Calorim 100(2):661–665CrossRefGoogle Scholar
  9. 9.
    Nam GJ, Yoo JH, Lee JW (2010) Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. J Appl Polym Sci 96(5):1793–1800CrossRefGoogle Scholar
  10. 10.
    Zheng Q, Shangguan Y, Tong L, Mao P (2010) Effect of vibration on crystal morphology and structure of isotactic polypropylene in nonisothermal crystallization. J Appl Polym Sci 94(5):2187–2195CrossRefGoogle Scholar
  11. 11.
    Zhao W, Huang Y, Liao X, Yang Q (2013) The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties. Polymer 54(4):1455–1462.  https://doi.org/10.1016/j.polymer.2012.12.073 CrossRefGoogle Scholar
  12. 12.
    Kitade S, Kurihara H, Asuka K, Katsuno S, Akiba I, Sakurai K (2017) Oriented crystallization of long chain branched polypropylene induced by step-shear deformation in pre-crystallization regime. Polymer 116:395–402.  https://doi.org/10.1016/j.polymer.2017.02.005 CrossRefGoogle Scholar
  13. 13.
    Hou W-M, Liu G, Zhou J-J, Gao X, Li Y, Li L, Zheng S, Xin Z, Zhao L-Q (2006) The influence of crystal structures of nucleating agents on the crystallization behaviors of isotactic polypropylene. Colloid Polym Sci 285(1):11–17.  https://doi.org/10.1007/s00396-006-1475-x CrossRefGoogle Scholar
  14. 14.
    Tang J, Wang Y, Liu H, Belfiore LA (2004) Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45(7):2081–2091CrossRefGoogle Scholar
  15. 15.
    Castillo LA, Barbosa SE, Capiati NJ (2012) Influence of talc genesis and particle surface on the crystallization kinetics of polypropylene/talc composites. J Appl Polym Sci 126(5):1763–1772CrossRefGoogle Scholar
  16. 16.
    Li Y, Yao Z, Chen Z-h, Qiu S-l, Zeng C, Cao K (2015) High melt strength polypropylene by ionic modification: preparation, rheological properties and foaming behaviors. Polymer 70:207–214.  https://doi.org/10.1016/j.polymer.2015.06.032 CrossRefGoogle Scholar
  17. 17.
    Zhang X, Zhang D, Liu T (2012) Influence of nucleating agent on properties of isotactic polypropylene. Energy Procedia 17(8):1829–1835CrossRefGoogle Scholar
  18. 18.
    Zhao S, Zhong X, Jing Z, Han T (2012) Combined effect of organic phosphate sodium and nanoclay on the mechanical properties and crystallization behavior of isotactic polypropylene. J Appl Polym Sci 123(1):617–626CrossRefGoogle Scholar
  19. 19.
    Long L, He W, Zhang M, Zhang K, Qin S, Yu J (2015) Nucleation effects of sodium and ammonium salts of 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate in isotactic polypropylene. Polym Eng Sci 55(1):22–28CrossRefGoogle Scholar
  20. 20.
    Rungswang W, Thongsak K, Prasansuklarb A, Plailahan K, Saendee P, Rugmai S, Cheevasrirungruang W (2014) Effects of sodium salt and sorbitol-derivative nucleating agents on physical properties related to crystal structure and orientation of polypropylene. Ind Eng Chem Res 53(6):2331–2339CrossRefGoogle Scholar
  21. 21.
    Kilic A, Shim E, Yeom BY, Pourdeyhimi B (2013) Effect of DMDBS (3 : 2, 4-bis(3,4-dimethyldibenzylidene) sorbitol) and NA-11 (sodium 2,2′-methylene-bis(4,6-di-tertbutylphenyl)-phosphate) on electret properties of polypropylene filaments. J Appl Polym Sci 130(3):2068–2075CrossRefGoogle Scholar
  22. 22.
    Patil N, Invigorito C, Gahleitner M, Rastogi S (2013) Influence of a particulate nucleating agent on the quiescent and flow-induced crystallization of isotactic polypropylene. Polymer 54(21):5883–5891CrossRefGoogle Scholar
  23. 23.
    Guo M, Zhang Y, Li J, Pan G, Yan H, Luo Y, Liu Y (2014) Ultrafine dispersion of a phosphate nucleating agent in a polypropylene matrix via the microemulsion method. RSC Adv 4(23):11931–11938CrossRefGoogle Scholar
  24. 24.
    Jang GS, Cho WJ, Ha CS (2001) Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J Polym Sci B Polym Phys 39(10):1001–1016CrossRefGoogle Scholar
  25. 25.
    Qiu F, Wang M, Hao Y, Guo S (2014) The effect of talc orientation and transcrystallization on mechanical properties and thermal stability of the polypropylene/talc composites. Compos A: Appl Sci Manuf 58(58):7–15CrossRefGoogle Scholar
  26. 26.
    Lv Z, Hu C, Xue J, Tao D (2010) Effect of zeolite 5A on the crystalline behavior of polypropylene (PP) in PP/β-nucleating agent system. Polym Compos 29(12):1291–1296CrossRefGoogle Scholar
  27. 27.
    Jiang J, Li G, Tan N, Ding Q, Mai K (2012) Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator. Thermochim Acta 546(546):127–133CrossRefGoogle Scholar
  28. 28.
    Lv Z, Wang K, Qiao Z, Wang W (2010) The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene. Mater Des 31(8):3804–3809CrossRefGoogle Scholar
  29. 29.
    Jiang J, Li G, Liu H, Ding Q, Mai K (2013) Preparation and β-crystallization of zeolite filled isotactic polypropylene composites. Compos A: Appl Sci Manuf 45:88–94CrossRefGoogle Scholar
  30. 30.
    Ren Y, Guo J, Zhang Q, Zou H, Qu C, Chu L (2016) Effect of TMB-5 on dispersion of MWCNTs in iPP and crystallization of β-nucleated iPP/MWCNTs composites. J Polym Res 23(7):127CrossRefGoogle Scholar
  31. 31.
    Long L, He W, Li J, Xiang Y, Qin S, Yu J (2016) Joint effects of molecular structure and crystal morphology of organophosphate monovalent salts on nucleated isotactic poly(propylene). J Polym Res 23(10):206CrossRefGoogle Scholar
  32. 32.
    Roy S, Scionti V, Jana S, Wesdemiotis C, Pischera A, Espe M (2011) Sorbitol–POSS interactions on development of isotactic polypropylene composites. Macromolecules 44(20):8064–8079CrossRefGoogle Scholar
  33. 33.
    Feng B, Li Z, Chen G, Zhu K, Zhao Y, Yuan X (2017) Improving crystallization behaviors of isotactic polypropylene via a new POSS-sorbitol compound. Polym Eng Sci 57(4):357–364CrossRefGoogle Scholar
  34. 34.
    Dobrzyńska-Mizera M, Dutkiewicz M, Sterzyński T, Lorenzo M (2016) Isotactic polypropylene modified with sorbitol-based derivative and siloxane-silsesquioxane resin. Eur Polym J 85:62–71CrossRefGoogle Scholar
  35. 35.
    Modro A, Modro T (2002) The phosphoryl and the carbonyl group as hydrogen bond acceptors. Phosphorus Sulfur Silicon Relat Elem 177(8–9):2067CrossRefGoogle Scholar
  36. 36.
    Aksnes G, Gramstad T, Larsson L, Dodson R (1960) Intermolecular hydrogen bond association between phenol and compounds which contain the phosphoryl and carbonyl groups. Acta Chem Scand 14:1475–1484CrossRefGoogle Scholar
  37. 37.
    Shi S, Yang C, Nie M (2017) Enhanced interfacial strength of natural fiber/polypropylene composite with mechanical-interlocking interface. ACS Sustain Chem EngGoogle Scholar
  38. 38.
    Hu D, Wang G, Feng J, Lu X (2016) Exploring supramolecular self-assembly of a bisamide nucleating agent in polypropylene melt: the roles of hydrogen bond and molecular conformation. Polymer 93:123–131CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Multiphase Materials Chemical Engineering and Production Engineering Department, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations