Advertisement

Cationic electrolyte copolymers of diallyldimethylammonium chloride with carboxybetaine 2-(diallyl(methyl) ammonio) acetate of various compositions in water solutions of different ionic strengths

  • Aleksey Andreevich LezovEmail author
  • A. A. Lezova
  • P. S. Vlasov
  • S. A. Samokhvalova
  • V. B. Rogozhin
  • G. E. Polushina
  • N. V. Tsvetkov
ORIGINAL PAPER
  • 30 Downloads

Abstract

Random copolymers of diallyldimethylammonium chloride (DADMAC) and carboxybetaine 2-(diallyl(methyl)ammonio) acetate (DAMA) with different compositions (10%/90%), (50%/50%) and (70%/30%), as well as poly(DAMA) and poly(DADMAC) homopolymers, were synthesized. Molecular characteristics of poly(DADMAC–co–DAMA) copolymers and homopolymers were determined in water solutions in the presence of 0.1 M NaOH and a low molecular weight salt (NaCl in various concentrations) by viscometery, dynamic and static light scattering. Dependences of several important conformational parameters, such as swelling coefficient α, the Huggins constant kH, and the second virial coefficient A2, on copolymer composition (charge asymmetry) and NaCl concentration in solution were analyzed. It was shown that growth of charge asymmetry leads to sharp increase in copolymer size.

Keywords

Polyelectrolyte Polybetaine Conformation Solution 

Notes

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research (RFBR), according to the research project No. 16-33-60104 mol_a_dk. Authors are grateful to the Center for Diagnostics of Functional Materials for Medicine, Pharmacology, and Nanoelectronics (St Petersburg State University).

References

  1. 1.
    Kudaibergenov S, Nuraje N, Kudaibergenov SE, Nuraje N (2018) Intra- and Interpolyelectrolyte complexes of Polyampholytes. Polymers 10:1146.  https://doi.org/10.3390/polym10101146 CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wandrey C, Hernández-Barajas J, Hunkeler D (1999) Diallyldimethylammonium chloride and its polymers. Adv Polym Sci 145:125–182Google Scholar
  3. 3.
    Laschewsky A (2012) Recent trends in the synthesis of polyelectrolytes. Curr Opin Colloid Interface Sci 17:56–63CrossRefGoogle Scholar
  4. 4.
    Abdollahi M, Ziaee F, Alamdari P, Koolivand H (2013) A comprehensive study on the kinetics of aqueous free-radical homo- and copolymerization of acrylamide and diallyldimethylammonium chloride by online 1H-NMR spectroscopy. J Polym Res 20:239.  https://doi.org/10.1007/s10965-013-0239-9 CrossRefGoogle Scholar
  5. 5.
    Ali SA, Haladu SA, El-Sharif AMZ (2016) Synthesis and application of a cyclopolymer bearing a propylphosphonic acid and a propylcarboxylic acid pendants in the same repeating unit. J Polym Res 23:167.  https://doi.org/10.1007/s10965-016-1006-5 CrossRefGoogle Scholar
  6. 6.
    Liang SJ, Zhu SP (2013) Fabrication of polyelectrolyte/TiO2 hybrid membrane via a simple method and characterization of its thermal behavior. Adv Mater Res 602-604:1484–1487.  https://doi.org/10.4028/www.scientific.net/AMR.602-604.1484 CrossRefGoogle Scholar
  7. 7.
    Francis S, Varshney L, Sabharwal S (2007) Thermal degradation behavior of radiation synthesized polydiallyldimethylammonium chloride. Eur Polym J 43:2525–2531.  https://doi.org/10.1016/j.eurpolymj.2007.03.009 CrossRefGoogle Scholar
  8. 8.
    Tsvetkov NV, Lezov AA, Vlasov PS, Gubarev AS, Lezova AA, Lebedeva EV, Polushina GE, Domnina NS (2017) Macromolecules of polycarboxybetaine poly(4-N,N-diallyl-N-methylammonio) butanoate: synthesis and molecular characteristics. Polymer 122:34–44.  https://doi.org/10.1016/j.polymer.2017.06.030 CrossRefGoogle Scholar
  9. 9.
    Jaeger W, Bohrisch J, Laschewsky A (2010) Synthetic polymers with quaternary nitrogen atoms—synthesis and structure of the most used type of cationic polyelectrolytes. Prog Polym Sci 35:511–577.  https://doi.org/10.1016/j.progpolymsci.2010.01.002 CrossRefGoogle Scholar
  10. 10.
    Jin F, Hu J, Yang M, Jin X, He W, Han H (2006) Determination of diallyldimethylammonium chloride in drinking water by reversed-phase ion-pair chromatography–electrospray ionization mass spectrometry. J Chromatogr A 1101:222–225.  https://doi.org/10.1016/j.chroma.2005.10.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Tsvetkov NV, Lezov AA, Vlasov PS, Lezova AA, Samokhvalova SA, Lebedeva EV, Polushina GE (2016) Copolymers of diallyldimethylammonium chloride and 2-(diallyl(methyl) ammonio) acetate: effect of composition and ionic strength on conformational properties. Eur Polym J 84:268–278.  https://doi.org/10.1016/j.eurpolymj.2016.09.026 CrossRefGoogle Scholar
  12. 12.
    Lezov AV, Polushina GE, Lezov AA, Vlasov PS, Domnina NS (2011) Molecular properties of the copolymers of N,N-diallyl-N,N-dimethylammonium chloride and maleic acid. Polymer Science - Series A 53:93–101CrossRefGoogle Scholar
  13. 13.
    Lezov AV, Vlasov PS, Lezov AA, Domnina NS, Polushina GE (2011) Molecular properties of poly(carboxybetaine) in solutions with different ionic strengths and pH values. Polymer Science - Series A 53:1012–1018CrossRefGoogle Scholar
  14. 14.
    Wu C, Siddiq M, Woo KF (1995) Laser light-scattering characterization of a polymer mixture made of individual linear chains and clusters. Macromolecules 28:4914–4919.  https://doi.org/10.1021/ma00118a019 CrossRefGoogle Scholar
  15. 15.
    Shibayama M, Karino T, Okabe S (2006) Distribution analyses of multi-modal dynamic light scattering data. Polymer 47:6446–6456.  https://doi.org/10.1016/j.polymer.2006.06.060 CrossRefGoogle Scholar
  16. 16.
    Filippov SK, Lezov AV, Sergeeva OY, Olifirenko AS, Lesnichin SB, Domnina NS, Komarova EA, Almgren M, Karlsson G, Štepanek P (2008) Aggregation of dextran hydrophobically modified by sterically-hindered phenols in aqueous solutions: aggregates vs. single molecules. Eur Polym J 44:3361–3369.  https://doi.org/10.1016/j.eurpolymj.2008.07.041 CrossRefGoogle Scholar
  17. 17.
    Litmanovich EA, Ivleva EM (2010) The problem of bimodal distributions in dynamic light scattering: theory and experiment. Polym Sci Ser A 52:671–678.  https://doi.org/10.1134/S0965545X10060143 CrossRefGoogle Scholar
  18. 18.
    Sedlák M (1996) The ionic strength dependence of the structure and dynamics of polyelectrolyte solutions as seen by light scattering: the slow mode dilemma. J Chem Phys 105:10123–10133.  https://doi.org/10.1063/1.472841 CrossRefGoogle Scholar
  19. 19.
    Sedlák M (1997) Dynamic light scattering from binary mixtures of polyelectrolytes. I. Influence of mixing on the fast and slow polyelectrolyte mode behavior. J Chem Phys 107:10799–10804.  https://doi.org/10.1063/1.474196 CrossRefGoogle Scholar
  20. 20.
    Berne BJ, Pecora R (1976) Dynamic light scattering, with application to chemistry, biology and physics. John Wiley & Sons, New YorkGoogle Scholar
  21. 21.
    Pike ER (1974) Photon correlation and light beating spectroscopy1st edn. Springer US, New YorkGoogle Scholar
  22. 22.
    Mondal MH (2017) Study of autocorrelation function of polymer and polymer–nanocomposite solutions using dynamic light scattering method. J Polym Res 24:218.  https://doi.org/10.1007/s10965-017-1368-3 CrossRefGoogle Scholar
  23. 23.
    Tsvetkov VN (1989) Rigid-chain polymers: hydrodynamic and optical properties in solution. Consultants BureauGoogle Scholar
  24. 24.
    Tsvetkov VN, Eskin VE (1971) Structure of macromolecules in solution. National Lending Library for Science and technologyGoogle Scholar
  25. 25.
    Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64:2716–2718.  https://doi.org/10.1021/ja01263a056 CrossRefGoogle Scholar
  26. 26.
    Pamies R, Hernández Cifre JG, del Carmen López Martínez M, García de la Torre J (2008) Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid Polym Sci 286:1223–1231CrossRefGoogle Scholar
  27. 27.
    Lezov AA, Vlasov PS, Polushina GE, Lezov AV (2012) Effect of chemical structure and charge distribution on behavior of polyzwitterions in solution. Macromol Symp 316:17–24.  https://doi.org/10.1002/masy.201250603 CrossRefGoogle Scholar
  28. 28.
    Yashiro J, Hagino R, Sato S, Norisuye T (2006) Chain stiffness and excluded-volume effects in polyelectrolyte solutions: characterization of sodium poly(2-acrylamido-2-methylpropanesulfonate) in aqueous sodium chloride. Polym J 38:57–63.  https://doi.org/10.1295/polymj.38.57 CrossRefGoogle Scholar
  29. 29.
    Fisher LW, Sochor AR, Tan JS (1977) Chain characteristics of poly(2-acrylamido-2-methylpropanesulfonate) polymers. 1. Light-scattering and intrinsic-viscosity studies. Macromolecules 10:949–954.  https://doi.org/10.1021/ma60059a012 CrossRefGoogle Scholar
  30. 30.
    Ali SA, Aal-e-Ali (2001) Synthesis and solution properties of a quaternary ammonium polyelectrolyte and its corresponding polyampholyte. Polymer 42:7961–7970.  https://doi.org/10.1016/S0032-3861(01)00289-0 CrossRefGoogle Scholar
  31. 31.
    Kumar R, Fredrickson GH (2009) Theory of polyzwitterion conformations. J Chem Phys 131:104901CrossRefGoogle Scholar
  32. 32.
    Higgs PG, Joanny J-F (1991) Theory of polyampholyte solutions. J Chem Phys 94:1543–1554CrossRefGoogle Scholar
  33. 33.
    Wittmer J, Johner A, Joanny JF (1993) Random and alternating polyampholytes. EPL 24:263–268.  https://doi.org/10.1209/0295-5075/24/4/005 CrossRefGoogle Scholar
  34. 34.
    Patrickios CS, Hertler WR, Abbott NL, Hatton TA (1994) Diblock, ABC triblock, and random methacrylic polyampholytes: synthesis by group transfer polymerization and solution behavior. Macromolecules 27:930–937.  https://doi.org/10.1021/ma00082a008 CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Molecular Biophysics and Polymer Physics, The Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussian Federation
  2. 2.Department of Macromolecular Chemistry, Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussian Federation

Personalised recommendations