Thermo-mechanical properties and morphology of epoxy resins with co-poly (phthalazinone ether nitrile)

  • Mengyao HuangEmail author
  • Zongyi Shen
  • Yi Wang
  • Han Li
  • Tingfu Luo
  • Yi Lei


The effect of the addition of a novel thermoplastic co-poly (phthalazinone ether nitrile) (PPEN) on a blend composed of a difunctional resin, unimolecule diglycidyl ether of bisphenol A (UDGEBA), and a anhydride, methyl tetrahydrophthalic anhydride (MTHPA) was discussed in the present study. The blends were studied by Fourier-transform infrared spectroscopy (FTIR), Thermo-gravimetric Analysis (TGA), Dynamic mechanical analysis (DMA) and Scanning electron microscopy (SEM). FTIR studies showed that the curing reaction was complete in all systems. TGA studies revealed that the thermal stability of the epoxy resin marginally decreased by the incorporation of PEEN into the epoxy resin. The MTHPA-cured UDGEBA/PPEN blends have two Tgs measured by DMA. SEM observation also confirmed that the blends were heterogeneous. The Tg of the resin containing 5 wt% PPEN was slightly higher than that of the unmodified resin, and the value of the impact strength also increased about 59% compared with the unmodified resin. It is attributed to the phase separation and the composition of the blends. However, higher PPEN content caused the decrease of the Tg. In addition, the fracture toughness of these systems was equal to or only slightly higher than the unmodified resin. SEM observation of fracture surfaces revealed the characteristics of brittle fracture for the pure epoxy and the typical ductile rupture of the UDGEBA/PPEN blends. Therefore,the introduction of PPEN maintains the heat resistance of the epoxy resin while improving its toughness,which is beneficial to the thermo-mechanical properties.


Poly(aryl ether nitrile) copolymer Epoxy resin Blending modification Solubility Thermal performance Toughness 



  1. 1.
    Alessi S, Conduruta D, Pitarresi G et al (2010) Hydrothermal ageing of radiation cured epoxy resin-polyether sulfone blends as matrices for structural composites. Polymer Degradation & Stability, 2010 95(4):677–683CrossRefGoogle Scholar
  2. 2.
    Ren F, Zhu G, Wang Y et al (2014) Microwave absorbing properties of graphene nanosheets/epoxy-cyanate ester resins composites. J Polym Res 21(2014):585CrossRefGoogle Scholar
  3. 3.
    Bakar M, Białkowska A, Kuřitka I et al (2018) Synergistic effects of thermoplastic and nanoclay on the performance properties and morphology of epoxy resin. Polym Compos 39:E2540–E2551CrossRefGoogle Scholar
  4. 4.
    Jamshidi H, Akbari R, Hosain M, Iran B (2015) Toughening of dicyandiamide-cured DGEBA-based epoxy resins using flxible diamine. Polym J 24:399–410Google Scholar
  5. 5.
    Ji YH, Liu Y, Huang GW et al (2015) Ternary ag/epoxy adhesive with excellent overall performance. ACS Appl Mater Interfaces 7(15):8041–8052CrossRefGoogle Scholar
  6. 6.
    Zhou C, Li R, Luo W et al (2016) The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. J Polym Res 23:14CrossRefGoogle Scholar
  7. 7.
    Lin J, Wu X, Zheng C et al (2014) A novolac epoxy resin modified polyurethane acylates polymer grafted network with enhanced thermal and mechanical properties. Polym Res 21:435CrossRefGoogle Scholar
  8. 8.
    Shi X, Lin X, Xu C et al (2015) Dynamics and thermal properties of epoxy resin cured by new diamino disiloxanes. J Appl Polym Sci 132(33). CrossRefGoogle Scholar
  9. 9.
    Varley RJ, Hodgkin JH, Hawthorne DG, Simon GP (1997) Toughening of a trifunctional epoxy system. IV. Dynamic mechanical Relaxational study of the thermoplastic-modified cure process. J Polym Sci B Polym Phys 35:153–163CrossRefGoogle Scholar
  10. 10.
    Garg AC (1988) Failure mechanisms in toughened epoxy resins a review composites. Sci Technol 31:179–223Google Scholar
  11. 11.
    Thomas R, Yumei D, He Y, Yang L, Moldenaers P, Yang W, Czigany T, Thomas S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294CrossRefGoogle Scholar
  12. 12.
    Mirmohseni A, Zavareh S (2010) Epoxy/acrylonitrile-butadiene-styrene copolymer/clay ternary nanocomposite as impact toughened epoxy. Polym Res 17:191CrossRefGoogle Scholar
  13. 13.
    Hodgkin JH, Simon GP, Varley RJ (1998) Thermoplastic toughening of epoxy resins: a critical review. Polym Adv Technol 9:3–10CrossRefGoogle Scholar
  14. 14.
    Oyanguren PA, Galante MJ, Andromaque K, Frontini PM, Williams RJJ (1999) Development of bicontinuous morphologies in polysulfone–epoxy blends. Polymer 40:5249–5255CrossRefGoogle Scholar
  15. 15.
    Zheng N, Huang Y, Liu HY et al (2017) Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves. Compos Sci Technol 140:8–15CrossRefGoogle Scholar
  16. 16.
    Rodin DL, Varnavski AN, Stefanovich SY et al (2017) The influence of polyetherimide on gelation and phase separation in epoxy systems. Mosc Univ Chem Bull 72(4):161–166CrossRefGoogle Scholar
  17. 17.
    Halawani N, Augé JL, Morel H et al (2017) Electrical, thermal and mechanical properties of poly-etherimide epoxy-diamine blend. Composites Part B 110:530–541CrossRefGoogle Scholar
  18. 18.
    Lee SE, Jeong E, Man YL et al (2016) Improvement of the mechanical and thermal properties of polyethersulfone-modified epoxy compositex. J Ind Eng Chem 33:73–79CrossRefGoogle Scholar
  19. 19.
    Cheng X, Wu Q, Morgan SE et al (2017) Morphologies and mechanical properties of polyethersulfone modified epoxy blends through multifunctional epoxy composition. J Appl Polym Sci 134(18).
  20. 20.
    Lin CH, Yu CC, Wei FS et al (2016) High temperature, flame-retardant, and transparent epoxy thermosets prepared from an acetovanillone-based hydroxyl poly (ether sulfone) and commercial epoxy resins. Polymer 97:300–308CrossRefGoogle Scholar
  21. 21.
    Yang A, Zhao D, Wu Y et al (2016) Synthesis of polyimide modified epoxy resins. Chinese Journal of Dental Materials & Devices 25(1):5–8Google Scholar
  22. 22.
    Park S-J, Heo G-Y, Jin F-L (2015) Cure behaviors and thermal stabilities of Tetrafunctional epoxy resin toughened by Polyamideimide. Macromol Res 23(4):320–324CrossRefGoogle Scholar
  23. 23.
    Francis B, Thomas S, Jesmy J, Ramaswamy R, Lakshmana Rao V (2005) Hydroxyl terminated poly (ether ether ketone) with pendent methyl group toughened epoxy resin: miscibility, morphology and mechanical properties. Polymer 46:12372–12385CrossRefGoogle Scholar
  24. 24.
    Chen CC, Chen YS, Shen KS et al (2003) Phase separation of poly (ether sulfone imide) modified epoxy resins. J Polym Res 10:39CrossRefGoogle Scholar
  25. 25.
    Yang R, Wei R, Li K et al (2016) Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability. Sci Rep 6:36434CrossRefGoogle Scholar
  26. 26.
    Liu R, Wang J, Liu C et al (2016) Synthesis, characterization and thermal decomposition of novel soluble copoly (aryl ether nitrile) containing phthalazinone and biphenyl moieties. Polymer Bulletin 73(7):1–16CrossRefGoogle Scholar
  27. 27.
    Song J, Wu G, Shi J et al (2010) Properties and morphology of interpenetrating polymer networks based on poly (urethane-imide) and epoxy resin. Macromol Res 18(10):944–950CrossRefGoogle Scholar
  28. 28.
    Hourston DJ, Lane JM, Zhang HX (1997) Toughening of epoxy resins with thermoplastics: 3. An investigation into the effects of composition on the properties of epoxy resin blends. Polym Int 42(4):349–355CrossRefGoogle Scholar
  29. 29.
    Jin FL, Park SJ (2007) Improvement in fracture behaviors of epoxy resins toughened with sulfonated poly (ether sulfone). Polym Degrad Stab 92(3):509–514CrossRefGoogle Scholar
  30. 30.
    Mimura K, Ito H, Fujioka H (2000) Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins. Polymer 41(12):4451–4459CrossRefGoogle Scholar
  31. 31.
    Thomas R, Ding Y, He Y et al (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49(1):278–294CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations