Advertisement

Properties and characterization of near infrared-triggered natural rubber (NR)/carnauba wax (CW)/carbon nanotube (CNT) shape memory bio-nanocomposites

  • Sun-Mou LaiEmail author
  • Geng-Lun Guo
  • Kuan-Ting Han
  • Po-Sung Huang
  • Zhen-Lin Huang
  • Ming-Jun Jiang
  • Ya-Ru Zou
ORIGINAL PAPER
  • 76 Downloads

Abstract

Very few studies have investigated on the blending of small molecules in the commercial biobased polymers with shape memory behavior. Herein, we investigated the shape memory properties of natural rubber and carnauba wax (S-NR/CW = 8:2, 6:4 and 5:5) melt-blends and nanocomposites vulcanized with sulfur/accelerators, using the melting temperature of wax as the switching temperature. With the addition of multi-walled carbon nanotube (CNT), the prepared S-NR/CW-CNT nanocomposites can not only enhance the mechanical properties but also enhance the shape fixity ratios, attributing to the unexpected improved dispersion of CW and the increased crystallinity of CW. In the one-way test, the shape fixity and recovery ratios for S-NR/CW/CNT 5:5 nanocomposites could reach up to 99.6% and 97.3% in the third thermomechanical cycle, respectively. In addition, CNT could be selectively and remotely heated by irradiation with near infrared laser to trigger shape memory process in a very short time. The additional paraffin wax was also blended with carnauba wax to form the wax mixture for preparing multi-shape memory behavior to exploit the various types of waxes with different melting temperatures (supplementary file). To the best of our knowledge, this is the first small molecule-filled NR nanocomposites with remotely-triggered shape memory properties.

Keywords

Natural rubber Carnauba wax CNT Shape memory polymer And remotely-triggered 

Notes

Acknowledgements

A grant-in-aid from the R.O.C government under MOST 105-2221-E-197-027-MY3 is greatly appreciated. The authors are grateful to Mr. Yi Cheng Hsieh for his manuscript preparation.

Supplementary material

10965_2019_1742_MOESM1_ESM.docx (653 kb)
ESM 1 (DOCX 652 kb)

References

  1. 1.
    Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past. present and future developments Prog Polym Sci 49(50):3–33CrossRefGoogle Scholar
  2. 2.
    Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269CrossRefGoogle Scholar
  3. 3.
    Pilate F, Toncheva A, Dubois P, Raquez J-M (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294CrossRefGoogle Scholar
  4. 4.
    Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymers for composites. Compos Sci Technol 160:169–198CrossRefGoogle Scholar
  5. 5.
    Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34(17):5868–5875CrossRefGoogle Scholar
  6. 6.
    Chung T, Rorno U-A, Mather PT (2008) Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1):184–192CrossRefGoogle Scholar
  7. 7.
    Zotzmann J, Behl M, Hofmann D, Lendlein A (2010) Reversible triple-shape effect of polymer networks containing polypentadecalactone-and poly(ε-caprolactone)-segments. Adv Mater 22(31):3424–3429CrossRefGoogle Scholar
  8. 8.
    Wu Y, Hu J, Han J, Zhu Y, Huang H, Li J, Tang B (2014) Two-way shape memory polymer with "switch-spring" composition by interpenetrating polymer network. J Mater Chem A 2(44):18816–18822CrossRefGoogle Scholar
  9. 9.
    Pandini S, Baldi F, Paderni K, Messori M, Toselli M, Pilati F, Gianoncelli A, Brisotto M, Bontempi E, Riccò T (2013) One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer 54(16):4253–4265CrossRefGoogle Scholar
  10. 10.
    Hou G, Wang F, Qu Z, Cheng Z, Zhang Y, Cai S, Xie T, Feng X (2018) Reversible semicrystalline polymer as actuators driven by organic solvent vapor. Macromol Rapid Commun 39(7):1700716CrossRefGoogle Scholar
  11. 11.
    Kumar NU, Kratz K, Behl M, Lendlein A (2012) Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. Express Polym Lett 6(1):26–40CrossRefGoogle Scholar
  12. 12.
    Bodaghi M, Damanpack AR, Liao WH (2018) Triple shape memory polymers by 4D printing. Smart Mater Struct 27(6):065010CrossRefGoogle Scholar
  13. 13.
    Lai S-M, You P-Y, Chiu YT, Kuo CW (2017) Triple-shape memory properties of thermoplastic polyurethane/olefin block copolymer/polycaprolactone blends. J Polym Res 24:161Google Scholar
  14. 14.
    Cavicchi KA (2015) Shape memory polymers from blends of elastomers and small molecule additives. Macromol Symp 358(1):194–201CrossRefGoogle Scholar
  15. 15.
    Kolesov I, Dolynchuk O, Radusch H-J (2015) Shape-memory behavior of cross-linked semi-crystalline polymers and their blends. Express Polym Lett 9(3):255–276CrossRefGoogle Scholar
  16. 16.
    Han J-L, Lai S-M, Chiu YT (2018) Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends. Polym Adv Technol 29(7):2010–2024CrossRefGoogle Scholar
  17. 17.
    Wu X, Huang WM, Zhao Y, Ding Z, Tang C, Zhang J (2013) Mechanisms of the shape memory effect in polymeric materials. Polymers 5(4):1169–1202CrossRefGoogle Scholar
  18. 18.
    Song S, Feng J, Wu P (2011) A new strategy to prepare polymer-based shape memory elastomers. Macromol Rapid Commun 32(19):1569–1575CrossRefGoogle Scholar
  19. 19.
    Li G, Zhang H, Fortin D, Fan W, Xia H, Zhao Y (2016) A composite material with room temperature shape process ability and optical repair. J Mater Chem C 4(25):5932–5939CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Feng J (2013) Difunctional olefin block copolymer/paraffin form-stable phase change materials with simultaneous shape memory property. Sol Energ Mat Sol Cells 117:259–266CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Hua W, Feng J (2016) A facile strategy to fabricate multishape memory polymers with controllable mechanical properties. Macro Rapid Commun 37(15):1262–1267CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Song S, Feng J, Wu P (2012) A new strategy to prepare polymer composites with versatile shape memory properties. J Mater Chem 22(47):24776–24782CrossRefGoogle Scholar
  23. 23.
    Katzenberg F, Joerg CT (2016) Shape memory natural rubber. J Polym Sci B Polym Phys 54(14):1381–1388CrossRefGoogle Scholar
  24. 24.
    Quitmann D, Frauke MR, Heuwers B, Katzenberg F, Joerg CT (2015) Programming of shape memory natural rubber for near-discrete shape transitions. ACS Appl Mater Interfaces 7(3):1486–1490CrossRefGoogle Scholar
  25. 25.
    Wee JS-H, Chai AB, Ho J-H (2017) Fabrication of shape memory natural rubber using palmitic acid. J King Saud Univ Eng Sci 29(4):494–501CrossRefGoogle Scholar
  26. 26.
    Lin GY, Liu SM, Dong FC (2014) Study on shape-memory mechanism and properties of NR/TPI blends. Appl Mech Mater 467:146–151CrossRefGoogle Scholar
  27. 27.
    Yuan D, Chen Z, Xu C, Chen K, Chen Y (2015) Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain Chem Eng 3(11):2856–2865CrossRefGoogle Scholar
  28. 28.
    Brostowitz NR, Weiss RA, Cavicchi KA (2014) Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid. ACS Macro Lett 3(4):374–377CrossRefGoogle Scholar
  29. 29.
    Pantoja M, Lin Z, Cakmak M, Cavicchi KA (2018) Structure–property relationships of fatty acid swollen, crosslinked natural rubber shape memory polymers. J Polym Sci B Polym Phys 56(8):673–688CrossRefGoogle Scholar
  30. 30.
    Jose T, Moni G, Salini S, Raju AJ, George JJ, George SC (2017) Multifunctional multi-walled carbon nanotube reinforced natural rubber nanocomposites. Ind Crop Prod 105:63–73CrossRefGoogle Scholar
  31. 31.
    Lu Y, Li J, Yu H, Wang W, Liu L, Wang K, Zhang L (2018) Plasma induced surface coating on carbon nanotube bundles to fabricate natural rubber nanocomposites. Polym Test 65:21–28CrossRefGoogle Scholar
  32. 32.
    Selvan NT, Eshwaran SB, Das A, Stöckelhuber KW, Wießner S, Pötschke P, Nando GB, Chervanyov AI, Heinrich G (2016) Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sensor Actuat A-Phys 239:102–113CrossRefGoogle Scholar
  33. 33.
    Fu X, Xie Z, Wei L, Huang C, Luo M, Huang G (2018) Detecting structural orientation in isoprene rubber/multiwall carbon nanotube nanocomposites at different scales during uniaxial deformation. Polym Int 67(3):258–268CrossRefGoogle Scholar
  34. 34.
    Lee EJ, Park JK, Lee Y-S, Lim K-H (2010) Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend. Korean J Chem Eng 27(2):524–530CrossRefGoogle Scholar
  35. 35.
    Xia M, Yuan Y, Zhao X, Cao X, Tang Z (2016) Cold storage condensation heat recovery system with a novel composite phase change material. Appl Energ 175:259–268CrossRefGoogle Scholar
  36. 36.
    Zhang X, He P, Zhang X, Li C, Liu H, Wang S, Dong F (2018) Manganese hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: facile synthesis, characterization and application to high performance supercapacitors. Electrochim Acta 276:92–101CrossRefGoogle Scholar
  37. 37.
    Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test 54:196–202CrossRefGoogle Scholar
  38. 38.
    Dghima F, Bouaziz M, Mezghani I, Boukhris M, Neffati M (2015) Laticifers identification and natural rubber characterization from the latex of Periploca angustifolia Labill (Apocynaceae). Flora 217:90–98CrossRefGoogle Scholar
  39. 39.
    Wang Q, Zhou L, Jiang Y, Gao J (2011) Improved stability of the carbon nanotubes–enzyme bioconjugates by biomimetic silicification. Enzym Microb Technol 49(1):11–16CrossRefGoogle Scholar
  40. 40.
    Ismail H, Ramly F, Othman N (2010) Multiwall carbon nanotube-filled natural rubber: the effects of filler loading and mixing method. Polym Plast Technol Eng 49(3):260–266CrossRefGoogle Scholar
  41. 41.
    Saliney T, Soney CG, Sabu T (2017) Evaluation of mechanical, thermal, electrical, and transport properties of MWCNT-filled NR/NBR blend composites. Polym Eng Sci 58(6):961–972Google Scholar
  42. 42.
    Taghizadeh A, Favis BD (2013) Carbon nanotubes in blends of polycaprolactone/thermoplastic starch. Carbohydr Polym 98(1):189–198CrossRefGoogle Scholar
  43. 43.
    Zhang Z-X, Wang W-Y, Yang J-H, Zhang N, Huang T, Wang Y (2016) Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J Phys Chem C 120(40):22793–22802CrossRefGoogle Scholar
  44. 44.
    Zhang W, Lu P, Qian L, Xiao H (2014) Fabrication of superhydrophobic paper surface via wax mixture coating. Chem Eng J 250:431–436CrossRefGoogle Scholar
  45. 45.
    Zhao P, Li L, Luo Y, Lv Z, Xu K, Li S, Zhong J, Wang Z, Peng Z (2016) Effect of blend ratio on the morphology and electromagnetic properties of nanoparticles incorporated natural rubber blends. Composites Part B 99:216–223CrossRefGoogle Scholar
  46. 46.
    Sotomayor ME, Krupa I, Várez A, Levenfeld B (2014) Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renew Energy 68:140–145CrossRefGoogle Scholar
  47. 47.
    Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of polu(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Symp Ser 2(12):3506–3514Google Scholar
  48. 48.
    Raghunath S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. J Polym Res 25:126CrossRefGoogle Scholar
  49. 49.
    Anthamatten M, Roddecha S, Li J (2013) Energy storage capacity of shape-memory polymers. Macromolecules 46(10):4230–4234CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNational I-Lan UniversityI-LanTaiwan, Republic of China

Personalised recommendations