Advertisement

Journal of Polymer Research

, 26:48 | Cite as

High-flux thin film nanocomposite forward osmosis membrane incorporated with blue lemon polyoxometalate based open-framework

  • Hasan Salehi
  • Alireza ShakeriEmail author
  • Hadi Naslhajian
  • Mojtaba Amini
ORIGINAL PAPER
  • 43 Downloads

Abstract

In this study a novel type of polyoxometalate based open-frameworks (POM-OFs) by using blue lemon (BL) as POM and tetrabutylammonium bromide (TBAB) as organic cationic coordinating agent successfully synthesized (BL.TBA-OFs) and incorporated in polyamide active layer via interfacial polymerization (IP) to fabricate hydrophilic and high water permeable thin-film nanocomposite (TFN) membranes. The prepared POM-OFs and TFN membranes were fully characterized using physicochemical techniques and the effect of POM-OFs incorporation on TFN membranes performance was investigated using reverse osmosis (RO) and forward osmosis (FO) experiments with regard to the water permeability, salt rejection, and selectivity. The enhancement in hydrophilicity of TFN membranes was confirmed by contact angle measurements, which attributed to the presence of superhydrophilic BL.POM. Water flux of the TFN-BL.TBA-4 membrane (with 400 ppm BL.TBA-OFs incorporation) increased from 18.1 to 28.6 LMH in FO mode, and 23.1 to 36.3 LMH in PRO mode, in comparison with unmodified TFC membrane. Enhancement in separation performance of the modified TFN membranes was attributed to the incorporation of nanopores BL.POM, which create short water pathways. By using sodium alginate as a foulant model the novel modified membrane showed better anti-fouling propensity than the TFC one. This report opens up a new modification route in the achieving of high efficient TFN membranes for FO process.

Keywords

Polyoxometalate base open frameworks Forward osmosis Thin film nanocomposite Hydrophilicity Anti-fouling 

Notes

Acknowledgements

The authors gratefully acknowledge the financial and instrumental supports received from the University of Tehran and University of Maragheh.

Compliance with ethical standards

Conflicts of interest

There are no conflicts to declare.

References

  1. 1.
    Mahdavi H, Moslehi M (2016) A new thin film composite nanofiltration membrane based on PET nanofiber support and polyamide top layer : preparation and characterization. J Polym Res 23:1–9.  https://doi.org/10.1007/s10965-016-1157-4 CrossRefGoogle Scholar
  2. 2.
    Shakeri A, Nakhjiri MT, Salehi H, Ghorbani F, Khankeshipour N (2018) Preparation of polymer-carbon nanotubes composite hydrogel and its application as forward osmosis draw agent. J Water Process Eng 24:42–48.  https://doi.org/10.1016/j.jwpe.2018.04.018 CrossRefGoogle Scholar
  3. 3.
    Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87.  https://doi.org/10.1016/j.memsci.2006.05.048 CrossRefGoogle Scholar
  4. 4.
    Chung T-S, Zhang S, Wang KY, Su J, Ling MM (2012) Forward osmosis processes: yesterday, today and tomorrow. Desalination 287:78–81.  https://doi.org/10.1016/j.desal.2010.12.019 CrossRefGoogle Scholar
  5. 5.
    Shakeri A, Salehi H, Taghvay Nakhjiri M, Shakeri E, Khankeshipour N, Ghorbani F (2018) Carboxymethylcellulose-quaternary graphene oxide nanocomposite polymer hydrogel as a biodegradable draw agent for osmotic water treatment process. Cellulose 0:.  https://doi.org/10.1007/s10570-018-2153-0
  6. 6.
    Guo CX, Zhao D, Zhao Q, Wang P, Lu X (2014) Na+−functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chem Commun 50:7318–7321.  https://doi.org/10.1039/c4cc01603c CrossRefGoogle Scholar
  7. 7.
    Salehi TM, Peyravi M, Jahanshahi M, Lau WJ, Rad AS (2018) Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis. J Nanopart Res 20.  https://doi.org/10.1007/s11051-018-4154-1
  8. 8.
    Shakeri A, Salehi H, Khankeshipour N, Nakhjiri MT, Ghorbani F (2018) Magnetic nanoparticle-crosslinked ferrohydrogel as a novel class of forward osmosis draw agent. J Nanopart Res 20:325.  https://doi.org/10.1007/s11051-018-4437-6 CrossRefGoogle Scholar
  9. 9.
    Ling MM, Chung T-S, Lu X (2011) Facile synthesis of thermosensitive magnetic nanoparticles as “smart” draw solutes in forward osmosis. Chem Commun 47:10788.  https://doi.org/10.1039/c1cc13944d CrossRefGoogle Scholar
  10. 10.
    Yang L, Wang Z, Zhang J, Song P, Liu L (2017) TIPS-co-NIPS method to prepare PES substrate with enhanced permeability for TFC-FO membrane. J Taiwan Inst Chem Eng 80:137–148.  https://doi.org/10.1016/j.jtice.2017.09.022 CrossRefGoogle Scholar
  11. 11.
    Qi S, Qiu CQ, Zhao Y, Tang CY (2012) Double-skinned forward osmosis membranes based on layer-by-layer assembly-FO performance and fouling behavior. J Membr Sci 405–406:20–29.  https://doi.org/10.1016/j.memsci.2012.02.032 CrossRefGoogle Scholar
  12. 12.
    Ong RC, Chung TS, de Wit JS, Helmer BJ (2014) Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. J Membr Sci 473:63–71.  https://doi.org/10.1016/j.memsci.2014.08.046 CrossRefGoogle Scholar
  13. 13.
    Shen L, Zhang X, Zuo J, Wang Y (2017) Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. J Membr Sci 534:46–58.  https://doi.org/10.1016/j.memsci.2017.04.008 CrossRefGoogle Scholar
  14. 14.
    Han G, Chung TS, Toriida M, Tamai S (2012) Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination. J Membr Sci 423–424:543–555.  https://doi.org/10.1016/j.memsci.2012.09.005 CrossRefGoogle Scholar
  15. 15.
    Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405.  https://doi.org/10.1039/C5EN00086F CrossRefGoogle Scholar
  16. 16.
    Ghanbari M, Emadzadeh D, Lau WJ, Lai SO, Matsuura T, Ismail AF (2015) Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination 358:33–41.  https://doi.org/10.1016/j.desal.2014.11.035 CrossRefGoogle Scholar
  17. 17.
    Lau WJ, Gray S, Matsuura T, Emadzadeh D, Paul Chen J, Ismail AF (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–324CrossRefGoogle Scholar
  18. 18.
    Mahdavi MR, Delnavaz M, Vatanpour V (2017) Fabrication and water desalination performance of piperazine–polyamide nanocomposite nanofiltration membranes embedded with raw and oxidized MWCNTs. J Taiwan Inst Chem Eng 75:189–198.  https://doi.org/10.1016/j.jtice.2017.03.039 CrossRefGoogle Scholar
  19. 19.
    Perera MGN, Galagedara YR, Ren Y, et al (2018) Fabrication of fullerenol-incorporated thin-film nanocomposite forward osmosis membranes for improved desalination performancesGoogle Scholar
  20. 20.
    Zhang Y, Miao X, Pan G, Shi H, Yan H, Xu J, Guo M, Li S, Zhang Y, Liu Y (2017) Highly improved permeation property of thin-film-composite polyamide membrane for water desalination. J Polym Res 24.  https://doi.org/10.1007/s10965-016-1167-2
  21. 21.
    Ma D, Peh SB, Han G, Chen SB (2017) Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal–organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection. ACS Appl Mater Interfaces 9:7523–7534.  https://doi.org/10.1021/acsami.6b14223 CrossRefPubMedGoogle Scholar
  22. 22.
    Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435:233–241.  https://doi.org/10.1016/j.memsci.2013.01.041 CrossRefGoogle Scholar
  23. 23.
    Ma N, Wei J, Liao R, Tang CY (2012) Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. J Membr Sci 405–406:149–157.  https://doi.org/10.1016/j.memsci.2012.03.002 CrossRefGoogle Scholar
  24. 24.
    Xiao F, Wang B, Hu X, Nair S, Chen Y (2018) Thin film nanocomposite membrane containing zeolitic imidazolate framework-8 via interfacial polymerization for highly permeable nanofiltration. J Taiwan Inst Chem Eng 83:159–167.  https://doi.org/10.1016/j.jtice.2017.11.033 CrossRefGoogle Scholar
  25. 25.
    Xu ZL, Yu LY, Han LF (2009) Polymer-nanoinorganic particles composite membranes: a brief overview. Front Chem Eng China 3:318–329.  https://doi.org/10.1007/s11705-009-0199-0 CrossRefGoogle Scholar
  26. 26.
    Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic−inorganic Polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048.  https://doi.org/10.1021/cr1000578 CrossRefPubMedGoogle Scholar
  27. 27.
    Long D-L, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36:105–121.  https://doi.org/10.1039/B502666K CrossRefPubMedGoogle Scholar
  28. 28.
    Song Y-F, Tsunashima R (2012) Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev 41:7384–7402.  https://doi.org/10.1039/c2cs35143a CrossRefPubMedGoogle Scholar
  29. 29.
    Proust A, Matt B, Villanneau R, Guillemot G, Gouzerh P, Izzet G (2012) Functionalization and post-functionalization: a step towards polyoxometalate-based materials. Chem Soc Rev 41:7605–7622.  https://doi.org/10.1039/c2cs35119f CrossRefPubMedGoogle Scholar
  30. 30.
    Vilà-Nadal L, Cronin L (2017) Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat Rev Mater 2:17054.  https://doi.org/10.1038/natrevmats.2017.54 CrossRefGoogle Scholar
  31. 31.
    Wang S-S, Yang G-Y (2015) Recent advances in Polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962.  https://doi.org/10.1021/cr500390v CrossRefPubMedGoogle Scholar
  32. 32.
    Müller A, Botar B, Das SK, Bögge H, Schmidtmann M, Merca A (2004) On the complex hedgehog-shaped cluster species containing 368 Mo atoms: simple preparation method, new spectral details and information about the unique formation. Polyhedron 23:2381–2385.  https://doi.org/10.1016/j.poly.2004.07.018 CrossRefGoogle Scholar
  33. 33.
    Tian M, Qiu C, Liao Y, Chou S, Wang R (2013) Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Sep Purif Technol 118:727–736.  https://doi.org/10.1016/j.seppur.2013.08.021 CrossRefGoogle Scholar
  34. 34.
    Salehi H, Rastgar M, Shakeri A (2017) Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide. Appl Surf Sci 413:99–108.  https://doi.org/10.1016/j.apsusc.2017.03.271 CrossRefGoogle Scholar
  35. 35.
    Liu Q, Li J, Zhou Z, Xie J, Lee JY (2016) Hydrophilic mineral coating of membrane substrate for reducing internal concentration polarization (ICP) in forward osmosis. Sci Rep 6:19593.  https://doi.org/10.1038/srep19593 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Salehi H, Shakeri A, Rastgar M (2018) Carboxylic polyethersulfone: a novel pH-responsive modifier in support layer of forward osmosis membrane. J Membr Sci 548:641–653.  https://doi.org/10.1016/j.memsci.2017.10.044 CrossRefGoogle Scholar
  37. 37.
    Rastgar M, Shakeri A, Bozorg A, Salehi H, Saadattalab V (2017) Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes. Desalination 421:179–189.  https://doi.org/10.1016/j.desal.2017.01.040 CrossRefGoogle Scholar
  38. 38.
    Zhao YF, Bin ZP, Sun J et al (2015) Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. J Colloid Interface Sci 448:380–388.  https://doi.org/10.1016/j.jcis.2015.01.084 CrossRefPubMedGoogle Scholar
  39. 39.
    Emadzadeh D, Lau WJ, Rahbari-Sisakht M, Ilbeygi H, Rana D, Matsuura T, Ismail AF (2015) Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem Eng J 281:243–251.  https://doi.org/10.1016/j.cej.2015.06.035 CrossRefGoogle Scholar
  40. 40.
    Fang N, Ji Y-M, Li C-Y, Wu YY, Ma CG, Liu HL, Li MX (2017) Synthesis and adsorption properties of [cu(L)2(H2O)]H2[cu(L)2(P2Mo5O23)]·4H2O/Fe3O4 nanocomposites. RSC Adv 7:25325–25333.  https://doi.org/10.1039/c7ra02133j CrossRefGoogle Scholar
  41. 41.
    Pan Y-HH, Zhao Q-YY, Gu L, Wu Q-YY (2017) Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination. Desalination 421:160–168.  https://doi.org/10.1016/j.desal.2017.04.019 CrossRefGoogle Scholar
  42. 42.
    Rezaee R, Nasseri S, Mahvi AH, Nabizadeh R, Mousavi SA, Rashidi A, Jafari A, Nazmara S (2015) Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J Environ Health Sci Eng 13(61):61.  https://doi.org/10.1186/s40201-015-0217-8 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bi R, Zhang Q, Zhang R, Su Y, Jiang Z (2018) Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J Membr Sci 553:17–24.  https://doi.org/10.1016/j.memsci.2018.02.010 CrossRefGoogle Scholar
  44. 44.
    Baroña GNB, Lim J, Choi M, Jung B (2013) Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 325:138–147.  https://doi.org/10.1016/j.desal.2013.06.026 CrossRefGoogle Scholar
  45. 45.
    Huang SH, Hsu CJ, Liaw DJ, Hu CC, Lee KR, Lai JY (2008) Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes. J Membr Sci 307:73–81.  https://doi.org/10.1016/j.memsci.2007.09.014 CrossRefGoogle Scholar
  46. 46.
    Shakeri A, Salehi H, Ghorbani F, Amini M, Naslhajian H (2019) Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable. J Colloid Interface Sci 536:328–338.  https://doi.org/10.1016/j.jcis.2018.10.069 CrossRefPubMedGoogle Scholar
  47. 47.
    Zirehpour A, Rahimpour A, Ulbricht M (2017) Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J Membr Sci 531:59–67.  https://doi.org/10.1016/j.memsci.2017.02.049 CrossRefGoogle Scholar
  48. 48.
    Shakeri A, Salehi H, Rastgar M (2017) Chitosan-based thin active layer membrane for forward osmosis desalination. Carbohydr Polym 174:658–668.  https://doi.org/10.1016/j.carbpol.2017.06.104 CrossRefPubMedGoogle Scholar
  49. 49.
    Zirehpour A, Rahimpour A, Arabi Shamsabadi A, Sharifian Gh. M, Soroush M (2017) Mitigation of thin-film composite membrane biofouling via immobilizing Nano-sized biocidal reservoirs in the membrane active layer. Environ Sci Technol 51:5511–5522.  https://doi.org/10.1021/acs.est.7b00782 CrossRefPubMedGoogle Scholar
  50. 50.
    Saren Q, Qiu CQ, Tang CY (2011) Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Environ Sci Technol 45:5201–5208.  https://doi.org/10.1021/es200115w CrossRefPubMedGoogle Scholar
  51. 51.
    Hegab HM, Wimalasiri Y, Ginic-Markovic M, Zou L (2015) Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan. Desalination 365:99–107.  https://doi.org/10.1016/j.desal.2015.02.029 CrossRefGoogle Scholar
  52. 52.
    Lu X, Romero-Vargas Castrillón S, Shaffer DL, Ma J, Elimelech M (2013) In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance. Environ Sci Technol 47:12219–12228.  https://doi.org/10.1021/es403179m CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang S, Qiu G, Ting YP, Chung TS (2013) Silver-PEGylated dendrimer nanocomposite coating for anti-fouling thin film composite membranes for water treatment. Colloids Surfaces A Physicochem Eng Asp 436:207–214.  https://doi.org/10.1016/j.colsurfa.2013.06.027 CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of MaraghehMaraghehIran

Personalised recommendations