Journal of Polymer Research

, 26:47 | Cite as

Crack growth resistance in rubber composites with controlled Interface bonding and interphase content

  • Mohammad Alimardani
  • Mehdi Razzaghi-KashaniEmail author
  • Thomas Koch


The distinction between abrasion resistance of carbon black and silica reinforced tire tread compounds has drawn attention to the indispensable role of interfacial phenomena on crack growth resistance of rubber composites. Attempts to determine the dependence of interface bonding (from covalent to non-covalent) on crack growth resistance of rubber composites are insufficient without knowledge of the contributions resulting from the interphase (i.e. the volume of rubber chains with restricted mobility). For highly-filled rubbers, the interphase is mainly formed by strong filler-filler interaction and entrapment of rubbers among filler aggregates. Working on the silane-treated silica reinforced rubber, here the alkyl length and the grafting density of silane are systematically controlled to fabricate filler systems with desired surface energy, specified filler-filler interaction and definite trapped-rubber/interphase content. At equal surface energy of fillers one could then change the interface bonding from covalent to non-covalent and study the role of interface on the crack growth resistance. After analyzing the tearing energy of the resulting composites, it was found that the primary factor affecting the fracture strength of highly filled rubbers is the content of the trapped-rubber. The type of interface bonding shared a secondary contribution to the tearing energy values. A slip-stick fracture pattern was observed for the composite with the covalently-bonded interface. A mechanistic model ascribing the relation between the tearing energy and the controlling parameters of the fracture was also proposed.


Fracture Silica-rubber composites Surface energy Interface bonding Interphase content 



Authors would like to sincerely thank Prof. V. M. Archodoulaki and also Dr. S. Seichter of Vienna University of Technology for cooperation concerning the crack growth experiment. Funding support from the Tarbiat Modares University is also highly appreciated.


  1. 1.
    Alimardani M, Razzaghi-Kashani M, Ghoreishy MHR (2017) Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects. Mater Des 115:348–354CrossRefGoogle Scholar
  2. 2.
    Rooj S, Das A, Morozov IA, Stöckelhuber KW, Stocek R, Heinrich G (2013) Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Compos Sci Technol 76:61–68CrossRefGoogle Scholar
  3. 3.
    Leelachai K, Kongkachuichay P, Dittanet P (2017) Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber. J Polym Res 24(3):41CrossRefGoogle Scholar
  4. 4.
    Lauke B (2017) Fracture toughness modelling of polymers filled with inhomogeneously distributed rigid spherical particles. Express Polym Lett 11(7):545–554CrossRefGoogle Scholar
  5. 5.
    Menon A, Pillai C, Jin W, Nah C (2005) Fatigue resistance of silica-filled natural rubber vulcanizates: comparative study of the effect of phosphorylated cardanol prepolymer and a silane coupling agent. Polym Int 54(4):629–635CrossRefGoogle Scholar
  6. 6.
    Hamed GR (1991) Energy dissipation and the fracture of rubber vulcanizates. Rubber Chem Technol 64(3):493–500CrossRefGoogle Scholar
  7. 7.
    Dierkes WK, Reuvekamp LA, Ten Brinke AJ, Noordermeer JW (2004) In: Kash L. Mittal (ed) Silanes and Other Coupling Agents. VSP, LondonGoogle Scholar
  8. 8.
    Ten Brinke J, Debnath S, Reuvekamp LA, Noordermeer JW (2003) Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos Sci Technol 63(8):1165–1174CrossRefGoogle Scholar
  9. 9.
    Suzuki N, Ito M, Yatsuyanagi F (2005) Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 46(1):193–201CrossRefGoogle Scholar
  10. 10.
    Suntako R (2017) The rubber damper reinforced by modified silica fume (mSF) as an alternative reinforcing filler in rubber industry. J Polym Res 24(8):131CrossRefGoogle Scholar
  11. 11.
    Liu J, Wang S, Tang Z, Huang J, Guo B, Huang G (2016) Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 49(22):8593–8604CrossRefGoogle Scholar
  12. 12.
    Jancar J, Douglas J, Starr FW, Kumar S, Cassagnau P, Lesser A, Sternstein SS, Buehler M (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343CrossRefGoogle Scholar
  13. 13.
    Kalfus J, Jancar J (2008) Reinforcing mechanisms in amorphous polymer nano-composites. Compos Sci Technol 68(15):3444–3447CrossRefGoogle Scholar
  14. 14.
    Kalfus J, Jancar J (2007) Relaxation processes in PVAc-HA nanocomposites. J Polym Sci B Polym Phys 45(11):1380–1388CrossRefGoogle Scholar
  15. 15.
    Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687CrossRefGoogle Scholar
  16. 16.
    Meera A, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113(42):17997–18002CrossRefGoogle Scholar
  17. 17.
    Wang H, Zhou H, Peng R, Mishnaevsky L (2011) Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos Sci Technol 71(7):980–988CrossRefGoogle Scholar
  18. 18.
    Alimardani M, Razzaghi-Kashani M, Karimi R, Mahtabani A (2016) Contribution of mechanical engagement and energetic interaction in reinforcement of SBR-Silane-treated silica composites. Rubber Chem Technol 89(2):292–305CrossRefGoogle Scholar
  19. 19.
    Mahtabani A, Alimardani M, Razzaghi-Kashani M (2017) Further evidence of filler–filler mechanical engagement in rubber compounds filled with silica treated by long-chain silane. Rubber Chem Technol 90(3):508–520CrossRefGoogle Scholar
  20. 20.
    Hamed G, Hiza S (2010) Trouser tearing of a model natural rubber Tire Belt Vulcanizate. Part 1: effect of rate of tearing. Rubber Chem Technol 83(2):199–212CrossRefGoogle Scholar
  21. 21.
    Qazvini NT, Mohammadi N, Jalali A, Varasteh A, Bagheri R (2002) The fracture behavior of rubbery vulcanizates: I. Single component versus blend systems. Rubber Chem Technol 73(2):78–85Google Scholar
  22. 22.
    Stacer R, Yanyo L, Kelley F (1985) Observations on the tearing of elastomers. Rubber Chem Technol 58(2):421–435CrossRefGoogle Scholar
  23. 23.
    Tsunoda K, Busfield J, Davies C, Thomas A (2000) Effect of materials variables on the tear behaviour of a non-crystallising elastomer. J Mater Sci 35(20):5187–5198CrossRefGoogle Scholar
  24. 24.
    Nah C, Ryu HJ, Han SH, Rhee JM, Lee MH (2001) Fracture behaviour of acrylonitrile–butadiene rubber/clay nanocomposite. Polym Int 50(11):1265–1268CrossRefGoogle Scholar
  25. 25.
    Liu Y, Li L, Wang Q, Zhang X (2011) Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 18(5):859–867CrossRefGoogle Scholar
  26. 26.
    Ahagon A, Gent A (1975) Threshold fracture energies for elastomers. J Polym Sci B Polym Phys 13(10):1903–1911CrossRefGoogle Scholar
  27. 27.
    Chang RJ, Gent A (1981) Effect of interfacial bonding on the strength of adhesion of elastomers. I. Self-adhesion. J Polym Sci B Polym Phys 19(10):1619–1633CrossRefGoogle Scholar
  28. 28.
    Andrews E, Kinloch A (1974) Mechanics of elastomeric adhesion. J Polym Sci 46(1):1–14Google Scholar
  29. 29.
    Schach R, Tran Y, Menelle A, Creton C (2007) Role of chain interpenetration in the adhesion between immiscible polymer melts. Macromolecules 40(17):6325–6332. CrossRefGoogle Scholar
  30. 30.
    Hosseini SM, Razzaghi-Kashani M (2014) Vulcanization kinetics of nano-silica filled styrene butadiene rubber. Polymer 55(24):6426–6434CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Mohammad Alimardani
    • 1
  • Mehdi Razzaghi-Kashani
    • 1
    Email author
  • Thomas Koch
    • 2
  1. 1.Polymer Engineering Department, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Institute of Materials Science and TechnologyVienna University of TechnologyViennaAustria

Personalised recommendations