Journal of Polymer Research

, 26:53 | Cite as

Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering

  • Aline dos Santos Silva
  • Bruno Vinicius Manzolli Rodrigues
  • Francilio Carvalho Oliveira
  • Jancineide Oliveira Carvalho
  • Luana Marotta Reis de Vasconcellos
  • Juliani Caroline Ribeiro de Araújo
  • Fernanda Roberta Marciano
  • Anderson Oliveira LoboEmail author


The polyester for bone tissue engineering is produced using different concentrations of hydroxyapatite. Poly(butylene adipate-co-terephthalate) (PBAT) solutions containing different concentrations of nano-hydroxyapatite (nHAp) (1, 2, 3, 4, 5 and 6% wt) were evaluated to assess their potential to produce scaffolds via electrospinning. The characteristics of these solutions were evaluated using surface tension analysis. Different solutions were electrospun and characterized using scanning electron microscopy, X-ray diffractometry (XRD), infrared spectroscopy (FTIR), and differential scanning calorimetry analysis. In vitro and in vivo experiments were performed using MG-63 osteoblast cells and male Wistar rats. The MTT assay was used to evaluate the cytotoxicity of scaffolds. Microtomography and a three-point bend test were used to analyze parameters of bone neoformation 4 weeks after implantation. We observed a requirement for solutions containing nHAp to reach chemical stability to produce ultrathin fibers. FTIR and XRD data demonstrated the presence of carbonate and phosphate groups, and thermal analysis showed a reduction in crystallinity of the nanocomposites when the concentration of nHAp was increased. None of the scaffolds analyzed demonstrated cytotoxicity when compared to controls. All of the PBAT/nHAp scaffolds analyzed promoted bone repair; however, a solution of PBAT with 3% nHAp improved bone volume, force, and stiffness when compared to controls.


Electrospinning Nano-hydroxyapatite PBAT Scaffolds In vitro In vivo Bone 



The authors acknowledge the São Paulo Research Foundation (grant #2011/17877-7 to AOL, #2015/01259-3 to ASS, 2011/20345-7 to FMR and #2016/04618-7 to JCRA) and the National Council for Scientific and Technological Development (grant #303752/2017-3 to AOL and #304133/2017-5 to FRM) for supporting this research.


  1. 1.
    Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757. CrossRefPubMedGoogle Scholar
  2. 2.
    Liu X, Ma PX (2004) Polymeric Scaffolds for Bone Tissue Engineering. 32(3):477-486.
  3. 3.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431. CrossRefPubMedGoogle Scholar
  4. 4.
    Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32(36):9622–9629. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C 78:1246–1262. CrossRefGoogle Scholar
  6. 6.
    Ghalia MA, Dahman YJ (2017) Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. 24(5):74.
  7. 7.
    Tai H-Y, Fu E, Cheng L-P, Don T-M (2014) Fabrication of asymmetric membranes from polyhydroxybutyrate and biphasic calcium phosphate/chitosan for guided bone regeneration. 21(5):421.
  8. 8.
    Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N, Khojasteh A (2017) Polymeric scaffolds in tissue engineering: a literature review. 105(2):431-459.
  9. 9.
    Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO (2018) Nanofibrous scaffolds for biomedical applications. Nanoscale 10(26):12228–12255. CrossRefPubMedGoogle Scholar
  10. 10.
    Sol P, Martins A, Reis RL, Neves NM (2016) 5 - Advanced polymer composites and structures for bone and cartilage tissue engineering. In: Liu H (ed) Nanocomposites for Musculoskeletal Tissue Regeneration. Woodhead Publishing, Oxford, pp 123–142. CrossRefGoogle Scholar
  11. 11.
    Nerantzaki M, Koliakou I, Kaloyianni MG, Koumentakou I, Siska E, Diamanti E, Karakassides MA, Boccaccini AR, Bikiaris DN (2017) A biomimetic approach for enhancing adhesion and osteogenic differentiation of adipose-derived stem cells on poly(butylene succinate) composites with bioactive ceramics and glasses. Eur Polym J 87:159–173. CrossRefGoogle Scholar
  12. 12.
    Venkatesan J, Kim S-K (2014) Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering—A Review. J Biomed Nanotechnol 10(10):3124–3140. CrossRefPubMedGoogle Scholar
  13. 13.
    Chadda H, P.S. Shahar, Satapathy BK, Ray AR (2016) Filler-immobilization assisted designing of hydroxyapatite and silica/ hydroxyapatite filled acrylate based dental restorative composites: Comparative evaluation of quasi-static and dynamic mechanical properties. 23(9):197.
  14. 14.
    Chiu D-J, Li Y, Feng C-K, Yang M-R, Chen K-S, Swieszkowski WJ (2017) Preparation and enhanced mechanical properties of hydroxyapatite hybrid hydrogels via novel photocatalytic polymerization. 24 (12):227.
  15. 15.
    Liu H, Xu GW, Wang YF, Zhao HS, Xiong S, Wu Y, Heng BC, An CR, Zhu GH, Xie DH (2015) Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49:103–112. CrossRefPubMedGoogle Scholar
  16. 16.
    Tayton E, Purcell M, Aarvold A, Smith JO, Briscoe A, Kanczler JM, Shakesheff KM, Howdle SM, Dunlop DG, Oreffo ROC (2014) A comparison of polymer and polymer–hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study. 102(8):2613-2624.
  17. 17.
    Gohil SV, Suhail S, Rose J, Vella T, Nair LS (2017) Chapter 8 - Polymers and Composites for Orthopedic Applications. In: Bose S, Bandyopadhyay A (eds) Materials for Bone Disorders. Academic Press, pp 349-403.
  18. 18.
    Danoux CB, Barbieri D, Yuan H, de Bruijn JD, van Blitterswijk CA, Habibovic P (2014) In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4(1):e27664. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ramesh N, Moratti SC, Dias GJ (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. 106(5):2046-2057.
  20. 20.
    Stagner J (2016) Methane generation from anaerobic digestion of biodegradable plastics – a review. Int J Environ Stud 73(3):462–468. CrossRefGoogle Scholar
  21. 21.
    Jiang L, Wolcott MP, Zhang J (2006) Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules 7(1):199–207. CrossRefPubMedGoogle Scholar
  22. 22.
    Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32(5):918–926. CrossRefGoogle Scholar
  23. 23.
    Marinho VAD, Pereira CAB, Vitorino MBC, Silva AS, Carvalho LH, Canedo EL (2017) Degradation and recovery in poly(butylene adipate-co-terephthalate)/ thermoplastic starch blends. Polym Test 58:166–172. CrossRefGoogle Scholar
  24. 24.
    Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF An overview on properties and applications of poly(butylene adipate-co-terephthalate)–PBAT based composites. 0(0).
  25. 25.
    Arslan A, Çakmak S, Cengiz A, Gümüşderelioğlu M (2016) Poly(butylene adipate-co-terephthalate) scaffolds: processing, structural characteristics and cellular responses. J Biomater Sci Polym Ed 27(18):1841–1859. CrossRefGoogle Scholar
  26. 26.
    Fukushima K, Rasyida A, Yang MC (2013) Characterization, degradation and biocompatibility of PBAT based nanocomposites. Appl Clay Sci 80-81:291–298. CrossRefGoogle Scholar
  27. 27.
    Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mat Sci Eng C-Mater 32(6):1331–1351. CrossRefGoogle Scholar
  28. 28.
    Kwiecien I, Adamus G, Jiang GZ, Radecka I, Baldwin TC, Khan HR, Johnston B, Pennetta V, Hill D, Bretz I, Kowakzuk M (2018) Biodegradable PBAT/PLA Blend with Bioactive MCPA-PHBV Conjugate Suppresses Weed Growth. Biomacromolecules 19(2):511–520. CrossRefPubMedGoogle Scholar
  29. 29.
    Neto WAR, de Paula ACC, Martins TMM, Goes AM, Averous L, Schlatter G, Bretas RES (2015) Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polym Degrad Stab 120:61–69. CrossRefGoogle Scholar
  30. 30.
    Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO (2016) Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mat Sci Eng C-Mater 59:782–791. CrossRefGoogle Scholar
  31. 31.
    Santana-Melo GF, Rodrigues BVM, da Silva E, Ricci R, Marciano FR, Webster TJ, Vasconcellos LMR, Lobo AO (2017) Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf B-Biointerfaces 155:544–552. CrossRefPubMedGoogle Scholar
  32. 32.
    de Castro JG, Rodrigues BVM, Ricci R, Costa MM, Ribeiro AFC, Marciano FR, Lobo AO (2016) Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition. RSC Adv 6(39):32615–32623. CrossRefGoogle Scholar
  33. 33.
    Barbosa MC, Messmer NR, Brazil TR, Marciano FR, Lobo AO (2013) The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Mater Sci Eng C 33(5):2620–2625. CrossRefGoogle Scholar
  34. 34.
    Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, Mechanical, and Thermal Properties of Biodegradable Polyesters/Poly(Lactic Acid) Blends. J Nanomater 2010:8. CrossRefGoogle Scholar
  35. 35.
    Uysal I, Severcan F, Evis Z (2013) Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride. Ceram Int 39(7):7727–7733. CrossRefGoogle Scholar
  36. 36.
    Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25(2):229–238. CrossRefPubMedGoogle Scholar
  37. 37.
    Chen J-H, Chen C-C, Yang M-C (2011) Characterization of Nanocomposites of Poly(butylene adipate-co-terephthalate) blending with Organoclay. J Polym Res 18(6):2151–2159. CrossRefGoogle Scholar
  38. 38.
    Ellingson PC, Strand DA, Cohen A, Sammler RL, Carriere CJ (1994) Molecular Weight Dependence of Polystyrene/Poly(methyl methacrylate) Interfacial Tension Probed by Imbedded-Fiber Retraction. Macromolecules 27(6):1643–1647. CrossRefGoogle Scholar
  39. 39.
    Dimitry OIH, Abdeen ZI, Ismail EA, Saad ALGJ (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. 17(6):801-813.
  40. 40.
    Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C 29(3):663–668. CrossRefGoogle Scholar
  41. 41.
    Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. CrossRefGoogle Scholar
  42. 42.
    Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272. CrossRefGoogle Scholar
  43. 43.
    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425. CrossRefGoogle Scholar
  44. 44.
    Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922. CrossRefGoogle Scholar
  45. 45.
    Sauer BB, Dee GT (2002) Surface Tension and Melt Cohesive Energy Density of Polymer Melts Including High Melting and High Glass Transition Polymers. Macromolecules 35(18):7024–7030. CrossRefGoogle Scholar
  46. 46.
    Yu DG, Branford-White C, White K, Chatterton NP, Zhu LM, Huang LY, Wang B (2011) A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution. Express Polym Lett 5(8):732–741. CrossRefGoogle Scholar
  47. 47.
    Huang L, Bui N-N, Manickam SS, McCutcheon JR (2011) Controlling electrospun nanofiber morphology and mechanical properties using humidity. 49(24):1734-1744.
  48. 48.
    Pelipenko J, Kristl J, Janković B, Baumgartner S, Kocbek P (2013) The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 456(1):125–134. CrossRefPubMedGoogle Scholar
  49. 49.
    Peresin MS, Habibi Y, Vesterinen A-H, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of Moisture on Electrospun Nanofiber Composites of Poly(vinyl alcohol) and Cellulose Nanocrystals. Biomacromolecules 11(9):2471–2477. CrossRefPubMedGoogle Scholar
  50. 50.
    Huan S, Liu G, Han G, Cheng W, Fu Z, Wu Q, Wang Q (2015) Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials 8(5):2718–2734. CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621. CrossRefGoogle Scholar
  52. 52.
    Arecchi A, Mannino S, Weiss J (2010) Electrospinning of Poly(vinyl alcohol) Nanofibers Loaded with Hexadecane Nanodroplets. 75(6):N80-N88.
  53. 53.
    Sawicka KM, Gouma PJJoNR (2006) Electrospun composite nanofibers for functional applications. 8(6):769-781.
  54. 54.
    Sarlak N, Nejad MAF, Shakhesi S, Shabani K (2012) Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD). Chem Eng J 210:410–416. CrossRefGoogle Scholar
  55. 55.
    Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem.
  56. 56.
    Cadafalch Gazquez G, Smulders V, Veldhuis SA, Wieringa P, Moroni L, Boukamp BA, Ten Elshof JE (2017) Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning. Nanomaterials (Basel, Switzerland) 7(1):16. CrossRefGoogle Scholar
  57. 57.
    Rathinavelu JR, Jung M-J, Im J-S, Seak-Lee Y, Palanivelu K (2013) Electrospinning of Polymer-Unaided TiO2 Fibers and Iron Impregnation for Sunlight-Induced Photo-Fenton's Degradation of Dyes. 30(11):653-662.
  58. 58.
    Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75. CrossRefGoogle Scholar
  59. 59.
    Sonseca A, Peponi L, Sahuquillo O, Kenny JM, Giménez E (2012) Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: Study on the morphology, crystallinity structure and thermal stability. Polym Degrad Stab 97(10):2052–2059. CrossRefGoogle Scholar
  60. 60.
    Jianyuan H, Minglong Y, Xianmo D (2002) Biodegradable and biocompatible nanocomposites of poly(ϵ-caprolactone) with hydroxyapatite nanocrystals: Thermal and mechanical properties. J Appl Polym Sci 86(3):676–683. CrossRefGoogle Scholar
  61. 61.
    Li Y, Zhang Z, Zhang Z (2018) Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair. Cells Tissues Organs 205(1):20–31. CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang H, Mao X, Zhao D, Jiang W, Du Z, Li Q, Jiang C, Han D (2017) Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Sci Rep 7(1):15255. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Raftery RM, Mencía Castaño I, Chen G, Cavanagh B, Quinn B, Curtin CM, Cryan SA, O'Brien FJ (2017) Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials 149:116–127. CrossRefPubMedGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Aline dos Santos Silva
    • 1
  • Bruno Vinicius Manzolli Rodrigues
    • 2
  • Francilio Carvalho Oliveira
    • 2
    • 3
  • Jancineide Oliveira Carvalho
    • 2
    • 3
  • Luana Marotta Reis de Vasconcellos
    • 4
  • Juliani Caroline Ribeiro de Araújo
    • 4
  • Fernanda Roberta Marciano
    • 2
  • Anderson Oliveira Lobo
    • 2
    • 5
    Email author
  1. 1.Faculdade de Engenharia-FEUPUniversidade do PortoPortoPortugal
  2. 2.Instituto Científico e TecnológicoUniversidade BrasilSão PauloBrazil
  3. 3.Centro Universitário UNINOVAFAPITeresinaBrazil
  4. 4.Instituto de Ciência e TecnologiaUniversidade Estadual PaulistaSão José dos CamposBrazil
  5. 5.Laboratório Interdisciplinhar de Materiais Avançados, Programa de Pós-Graduação em Ciência e Engenharia dos MateriaisUniversidade Federal do PiauíTeresinaBrazil

Personalised recommendations