Advertisement

Journal of Polymer Research

, 26:41 | Cite as

Adsorptive removal of chromium(VI) using spherical resorcinol-formaldehyde beads prepared by inverse suspension polymerization

  • Khudbudin Mulani
  • Vishwanath Patil
  • Nayaku Chavan
  • Kamini DondeEmail author
ORIGINAL PAPER
  • 177 Downloads

Abstract

The spherical cross-linked beaded polymers were prepared by condensation of resorcinol and formaldehyde in presence of tri-ethylamine by inverse suspension polymerization technique. The m-cresol, aniline, urea and thiourea were used as co-monomer and polyethylene glycol (PEG 400) was used as porogen. Paraffin oil was used as non-aqueous suspension agent. The polymeric spherical beads were prepared using various types of comonomers exhibiting range of particle size 77.62 to 158.84 μm at 90 °C and 300 rpm for 4 h. The resulting beads were analyzed by elemental analysis, particle size analysis and scanning electron microscope (SEM). The synthesized beads were used for the removal of Cr(VI) from aqueous solutions. A simple and sensitive solid phase extraction procedure was used for the determination of chromium at trace level by spectrophotometric method using 1,5-diphenylcarbazide reagent. The adsorption of Cr(VI) on the resorcinol-formaldehyde beads was monitored by energy-dispersive X-ray spectroscopy (EDX) analysis. The metal adsorption parameters such as contact time, pH, metal ion concentration and adsorbent dose were investigated. For Cr(VI), the maximum adsorption capacity was about 99% at pH 2 for the resorcinol-formaldehyde beads obtained.

Keywords

Resorcinol Formaldehyde Beads Inverse suspension Chromium (VI) Adsorption kinetics 

Notes

References

  1. 1.
    Lahari T, Lakshmi S, Yalangi S, Fadnavis N, Mulani K, Deokar S, Ponrathnam S (2012) Enzyme immobilization on epoxy supports in reverse micellar media: prevention of enzyme denaturation. J Mol Catal B Enzym 74:54–62CrossRefGoogle Scholar
  2. 2.
    Gonte R, Balasubramanian K, Mumbrekar J (2013) Porous and cross-linked cellulose beads for toxic metal ion removal: Hg(II) ions. Journal of Polymers 309:1–9Google Scholar
  3. 3.
    Okubo M, Mori H (1997) Production of multi-hollow polymer particles by the stepwise acid/alkali method. Colloid Polym Sci 275:634–639CrossRefGoogle Scholar
  4. 4.
    Charles J, Michael D (2002) Hollow latex particles: synthesis and applications. Adv Colloid Interf Sci 99:181CrossRefGoogle Scholar
  5. 5.
    Kim B, Kim J, Suh K (1999) Poly(methyl methacrylate) hollow particles by water-in-oil-in-water emulsion polymerization. Colloid Polym Sci 277:252–256CrossRefGoogle Scholar
  6. 6.
    Yi H, Changyou G, Yanchao S et al (2005) Preparation of porous polylactide microspheres by emulsion-solvent evaporation based on solution induced phase separation. Polym Adv Technol 16:622–627CrossRefGoogle Scholar
  7. 7.
    Bakelite L (1913) The chemical constitution of resinous phenolic condensation products. J Ind Eng Chem 5:506–511CrossRefGoogle Scholar
  8. 8.
    Gould D (1959) Phenolic resins. Reinhold, New YorkGoogle Scholar
  9. 9.
    Eghe A, Ahmed A, Gavin M, Mojtaba M, Mohammad N (2013) Preparation of controlled porosity resorcinol formaldehyde xerogels for adsorption applications. Chem Eng Trans 32:1651–1656Google Scholar
  10. 10.
    Eduardo V, Philip E, Archie E (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36:939–965CrossRefGoogle Scholar
  11. 11.
    Yuan H, Kalfas G, Ray W (2006) Suspension polymerization. J Macromol Sci Part C Polym Rev 31:215–299CrossRefGoogle Scholar
  12. 12.
    Vivaldo-Lima E, Wood P, Hamielec A, Penlidis A (1997) An updated reviews on suspension polymerization. Ind Eng Chem Res 36:939–965CrossRefGoogle Scholar
  13. 13.
    Dusan B, Jaromir S, Vladimir C (1996) Inverse suspension polymerization of the hydrophilic acrylic monomers in the static continuous phase. J Dispers Sci Technol 18:115–121Google Scholar
  14. 14.
    Harward D, Hartough P (1947) Modified phenol-formaldehyde resins. US patent 2546946Google Scholar
  15. 15.
    Haroaki K, Shigeo S (1982) Granular or powdery phenol-aldehyde resins and process for production thereof. US patent 4454298Google Scholar
  16. 16.
    Angelo P, Laurel M (1952) Reducing-sugar modified aniline-phenol-formaldehyde resins. US patent 2666037Google Scholar
  17. 17.
    Raymond D, Anthony J (1978) Phenol-aldehyde-amine resin/glycol curative compositions. US patent 4195151Google Scholar
  18. 18.
    Shrivastava S, Srivastava A, Singh B, Shah D, Verma A, Gutch P (2012) Study on phenolic resin beads: effect of reaction parameters on the properties of polymeric beads. J Appl Polym Sci 123:3741–3747CrossRefGoogle Scholar
  19. 19.
    Singh A, Lal D (2006) Effect of reaction parameters on the particle sizes of crosslinked spherical phenolic beads by suspension polymerization of phenol and formaldehyde. J Appl Polym Sci 100:2323–2330CrossRefGoogle Scholar
  20. 20.
    Zhou H, Huang G, Gao P, Long C (2007) Preparation of porous/hollow particles of phenolic resin. Polym Adv Technol 18:582–585CrossRefGoogle Scholar
  21. 21.
    Dwivedi C, Pathak S, Kumar M, Tripathi S, Bajaj P (2013) Removal of cesium by spherical resorcinol–formaldehyde resin beads: sorption and kinetic studies. J Radioanal Nucl Chem 297:1–8CrossRefGoogle Scholar
  22. 22.
    Wänninen E (1988) The determination of trace metals in natural waters,” ed by T. S. West and H. W. Nürnberg, Blackwell scientific publications, Oxford, London, pp-10Google Scholar
  23. 23.
    Zouboulis A, Goetz L (1991) Ion flotation as a tool for speciation studies selective separation in the system Cr3+/Cr6+. Toxicol Environ Chem 31–32:539–547CrossRefGoogle Scholar
  24. 24.
    Fernandez Y, Maranon E, Castrillon L, Vazquez I (2005) Removal of cd and Zn from inorganic industrial waste leachate by ion exchange. J Hazard Mater 126:169–175PubMedCrossRefGoogle Scholar
  25. 25.
    Kongsricharoern N, Polprasert C (1996) Chromium removal by a bipolar electrochemical precipitation process. Water Sci Technol 34:109–116CrossRefGoogle Scholar
  26. 26.
    Albino Kumar P, Ray M, Chakraborty S (2007) Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater 143:24–32PubMedCrossRefGoogle Scholar
  27. 27.
    Pearson R (1968) Hard and soft acids, HSAB. Part І. Fundamental principles. J Chem Educ 45:581–587CrossRefGoogle Scholar
  28. 28.
    Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aaqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172:439–446PubMedCrossRefGoogle Scholar
  29. 29.
    Wang L, Xing R, Liu S, Yu H, Qin Y, Li K, Feng J, Li R, Li P (2010) Recovery of silver (I) using a thiourea-modified chitosan resin. J Hazard Mater 180:577–582PubMedCrossRefGoogle Scholar
  30. 30.
    Ertan E, Gulfen M (2009) Separation of gold(III) ions from copper(II) and zinc(II) ions using thiourea-formaldehyde or urea-formaldehyde chelating resins. J Appl Polym Sci 111:2798–2805CrossRefGoogle Scholar
  31. 31.
    Birinci E, Gülfen M, Aydın A (2009) Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Hydrometallurgy 95:15–21CrossRefGoogle Scholar
  32. 32.
    Lam K, Fong C, Yeung K (2007) Separation of precious metals using selective mesoporous adsorbents. Gold Bull 40:192–198CrossRefGoogle Scholar
  33. 33.
    Lam K, Yeung K, McKay G (2006) An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents. J Phys Chem B 110:2187–2194PubMedCrossRefGoogle Scholar
  34. 34.
    Tai-Lin L, Hsing-Lung L (2013) Effective and selective recovery of precious metals by Thiourea modified magnetic nanoparticles. Int J Mol Sci 14:9834–9847CrossRefGoogle Scholar
  35. 35.
    Dhore M, Butoliya S, Zade A (2014) Removal of toxic metal ions from water using chelating Terpolymer resin as a function of different concentration time and pH. ISRN Polymer Science Article ID 873520Google Scholar
  36. 36.
    Talha Gokmen M, Du Prez F (2012) Porous polymer particles- a comprehensive guide to synthesis,characterization, functionalization and applications. Prog Polym Sci 37:365–405CrossRefGoogle Scholar
  37. 37.
    Saralidze K, Koole L, Knetsch M (2010) Polymeric microspheres for medical applications. Materials 3:3537–3564PubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mane S, Ponrathnam S, Chavan N (2016) Effect of Porogen concentration on surface area and porous properties of cross linked polymer beads. Can Chem Trans 4:192–200Google Scholar
  39. 39.
    Vivaldo-Lima E, Wood P, Hamielec A, Penlidis A (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36:939–965CrossRefGoogle Scholar
  40. 40.
    Srivastava S (2009) Co-polymerization of acrylates. Des Monomers Polym 12:1–18CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Ming G, Kamila G, Stokke B (2015) Swelling dynamics of a DNA-polymer hybrid hydrogel, prepared using polyethylene glycol as a Porogen. Gels 1:219–234CrossRefGoogle Scholar
  43. 43.
    Courtois J, Bystrom E, Irgum K (2006) Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer 47:2603–2611CrossRefGoogle Scholar
  44. 44.
    Bajpai K, Shrivastava M (2002) Swelling kinetics of a hydrogel of poly(ethylene glycol) and poly(acrylamide-co-styrene). J Appl Polym Sci 85:1419–1428CrossRefGoogle Scholar
  45. 45.
    Zhihui L, Wentao L, Zhongyuan L, Mingcheng Y, Xujing G, Haitao C, Suqin H, Chengshen Z (2013) Swelling and thermal properties of porous PNIPAM/PEG hydrogels prepared by radiation polymerization. Nucl Sci Tech 24:20201Google Scholar
  46. 46.
    Akolekar D, Hind A, Bhargava S (1998) Synthesis of Macro-, Meso-, and Microporous Carbons from Natural and Synthetic Sources, and Their Application as Adsorbents for the Removal of Quaternary Ammonium Compounds from Aqueous Solution. J Colloid Interface Sci 199:92–98CrossRefGoogle Scholar
  47. 47.
    Sánchez-Polo M, Rivera-Utrilla J (2002) Adsorbent-adsorbate interactions in the adsorption of cd(II) and Hg(II) on ozonized activated carbons. Environ Sci Technol 36:3850–3854PubMedCrossRefGoogle Scholar
  48. 48.
    Mashitah M, Zulfadhly Z, Bhatia S (1999) Binding mechanism of heavy metals biosorption by Pycnoporus sanguineus. J Artif Cells Blood Subst and Immob Biotechnol 27:441–445CrossRefGoogle Scholar
  49. 49.
    Iscen C, Kiran I, Ilhan S (2007) Biosorption of reactive black 5 dye by Penicillium restrictum: the kinetic study. J Hazard Mater 143:335–340PubMedCrossRefGoogle Scholar
  50. 50.
    Gao H, Sun Y, Zhou J, Xu R, Daun H (2013) Mussel inspired synthesis of polydopamine-functionalized grapheme hydrogel as reusable adsorbent for water purification. ACS Appl Mater Interfaces 5:425–432PubMedCrossRefGoogle Scholar
  51. 51.
    Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Sevenska Vetenskapsakademiens. Handlingar 24:1–39Google Scholar
  52. 52.
    Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 38:89–99CrossRefGoogle Scholar
  53. 53.
    Yang R (1999) Gas Separation by Adsorption Processes. – Series on Chemical Engineering, vol 1. Publishers – Imperial College Press, LondonGoogle Scholar
  54. 54.
    Freundlich F, Heller W (1939) The adsorption of cis- and trans-Azobenzen. J Am Chem Soc 21:2228–2230CrossRefGoogle Scholar
  55. 55.
    Mulani K, Daniels S, Rajdeo K, Tambe S, Chavan N (2014) Tannin-aniline-formaldehyde resole resins for arsenic removal from ground water sources. Çanad Chem Transactions 2:450Google Scholar
  56. 56.
    Freundlich H (1926) Capillary and colloid chemistry. Methuen Co., Ltd., LondonGoogle Scholar
  57. 57.
    Langmuir H (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Khudbudin Mulani
    • 1
  • Vishwanath Patil
    • 2
  • Nayaku Chavan
    • 3
  • Kamini Donde
    • 1
    Email author
  1. 1.Department of ChemistryRamnarain Ruia CollegeMumbaiIndia
  2. 2.Department of ChemistryUniversity of MumbaiMumbaiIndia
  3. 3.Polymer Science & Engineering DivisionCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations