Journal of Polymer Research

, 26:39 | Cite as

Influence of solvent solubility parameter on the power law exponents and critical concentrations of one soluble polyimide in solution

  • Hongxiang Chen
  • Ensong Zhang
  • Xuemin Dai
  • Wenke Yang
  • Xue Liu
  • Xuepeng Qiu
  • Wei LiuEmail author
  • Xiangling JiEmail author


Solvent species influence the interactions of dissolved polymers in solution and consequently induce changes in solution properties. A soluble polyimide was synthesized through polycondensation, and four solvents, namely, N,N-dimethylacetamide (DMAc), N-methyl pyrrolidone (NMP), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), were selected to investigate systematically the influence of solubility parameter on solution power law behaviors. The power law relationship between specific viscosity and concentration was established using rheology and applying concepts from the Zimm, Rouse-Zimm, and Doi-Edwards models. All power law exponents were higher than theoretical predictions, and in the three concentration regions, i.e. dilute, semidilute unentangled, and semidilute entangled, the exponents increase, decrease, and increase, respectively, with respect to solubility parameter. Arguments derived from the listed models are proposed to explain these trends. The influences of solubility parameter on the overlap and entanglement concentrations are also discussed.


Polyimide Solution property Power law exponent Critical concentration Solubility parameter 



We are grateful to the financial supports from National Basic Research Program of China (2014CB643604) and National Natural Science Foundation of China (51173178).

Supplementary material

10965_2018_1694_MOESM1_ESM.docx (21.3 mb)
ESM 1 (DOCX 21801 kb)


  1. 1.
    Ding M (2007) Isomeric polyimides. Prog Polym Sci 32(6):623–668CrossRefGoogle Scholar
  2. 2.
    Yin C, Dong J, Tan W, Lin J, Chen D (2015) Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. Polymer 75:178–186CrossRefGoogle Scholar
  3. 3.
    Luo C, Wang X, Wang J, Pan K (2016) One-pot preparation of polyimide/Fe3O4 magnetic nanofibers with solvent resistant properties. Compos Sci Technol 133:97–103CrossRefGoogle Scholar
  4. 4.
    Dong J, Yin C, Zhao X, Li Y, Zhang Q (2013) High strength polyimide fibers with functionalized grapheme. Polymer 54(23):6415–6424CrossRefGoogle Scholar
  5. 5.
    Lei X, Qiao M, Tian L, Chen Y, Zhang Q (2016) Tunable permittivity in high-performance hyperbranched polyimide films by adjusting backbone rigidity. J Phys Chem C 120(5):2548–2561CrossRefGoogle Scholar
  6. 6.
    Li B, Pang Y, Fang C, Gao J, Wang X, Zhang C, Liu X (2014) Influence of hydrogen-bonding interaction introduced by filled oligomer on bulk properties of blended polyimide films. J Appl Polym Sci 131(13):40498Google Scholar
  7. 7.
    Wang L, Hu A, Fan L, Yang S (2014) Structures and properties of closed-cell polyimide rigid foams. J Appl Polym Sci 130(5):3282–3291CrossRefGoogle Scholar
  8. 8.
    Wang H, Wang T, Yang S, Fan L (2013) Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 54(23):6339–6348CrossRefGoogle Scholar
  9. 9.
    Dong Z, Feng T, Zheng C, Li G, Liu F, Qiu X (2016) Mechanical properties of polyimide/multi-walled carbon nanotube composite fibers. Chin J Polym Sci 34(11):1386–1395CrossRefGoogle Scholar
  10. 10.
    Matsuura T, Hasuda Y, Nishi S, Yamada N (1991) Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride or pyromellitic dianhydride. Macromolecules 24(18):5001–5005CrossRefGoogle Scholar
  11. 11.
    Hougham G, Cassidy PE, Johns K, Dsvidson T (2002) Fluoropolymers 2:properties. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, MoscowCrossRefGoogle Scholar
  12. 12.
    Wang C, Chen W, Xu C, Zhao X, Li J (2016) Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric constant. Chin J Polym Sci 34(11):1363–1372CrossRefGoogle Scholar
  13. 13.
    Siddiq M, Hu H, Ding M, Li B, Wu C (1996) Laser light scattering studies of soluble high-performance polyimides: solution properties and molar mass distributions. Macromolecules 29(23):7426–7431CrossRefGoogle Scholar
  14. 14.
    Liu G, Qiu X, Bo S, Ji X (2012) Chain conformation and local rigidity of soluble polyimide (II): isomerized polyimides in THF. Chem Res Chin Univ 28(2):329–333Google Scholar
  15. 15.
    Liu G, Qiu X, Siddiq M, Bo S, Ji X (2013) Temperature dependence of chain conformation and local rigidity of isomerized polyimides in dimethyl formamide. Chem Res Chin Univ 29(5):1022–1028CrossRefGoogle Scholar
  16. 16.
    Liu G, Qiu X, Bo S, Ji X (2012) Chain conformation and local rigidity of isomerized polyimides in dimethyl formamide by size exclusion chromatography coupled with multi-detectors. Chromatographia 75(1–2):7–15CrossRefGoogle Scholar
  17. 17.
    Savitski EP, Li F, Lin SH, Mccreight KW, Wu W, Hsieh E, Rapold RF, Leland ME, Mclntyre DM, Harris FW, Cheng SZD, Wu C (1997) Investigation of the solution behavior of organo soluble aromatic polyimides. Int J Polym Anal Charact 4(2):153–172CrossRefGoogle Scholar
  18. 18.
    Zhang E, Dai X, Dong Z, Qiu X, Ji X (2016) Critical concentration and scaling exponents of one soluble polyimide from dilute to semidilute entangled solutions. Polymer 84:275–285CrossRefGoogle Scholar
  19. 19.
    Zhang E, Chen H, Dai X, Liu X, Yang W, Liu W, Dong Z, Qiu X, Ji X (2017) Influence of molecular weight on scaling exponents and critical concentrations of one soluble 6FDA-TFDB polyimide in solution. J Polym Res 24(3):47CrossRefGoogle Scholar
  20. 20.
    Zhang E, Dai X, Zhu Y, Chen Q, Sun Z, Qiu X, Ji X (2018) Associating behavior of one polyimide with high molecular weight in solution through a relatively weak interaction. Polymer 141:166–174CrossRefGoogle Scholar
  21. 21.
    Eom Y, Kim B (2014) Solubility parameter-based analysis of polyacrylonitrile solutions in N,N-dimethylformamide and dimethyl sulfoxide. Polymer 55:2570–2577CrossRefGoogle Scholar
  22. 22.
    Li W, Hao J, Zhou P, Liu Y, Lu C, Zhang Z (2017) Solvent-solubility-parameter-dependent homogeneity and sol-gel transitions of concentrated polyacrylonitrile solutions. J Appl Polym Sci 134:45405CrossRefGoogle Scholar
  23. 23.
    Antonietti M, Forster S, Zisenis M (1985) Solution viscosity of polyelectrolyte-surfactant complexes: polyelectrolyte behavior in nonaqueous solvents. Macromolecules 28:2270–2275CrossRefGoogle Scholar
  24. 24.
    Antoniou E, Buitrago C, Tsianou M, Alexandridis P (2010) Solvent effects on polysaccharide conformation. Carbohydr Polym 79:380–390CrossRefGoogle Scholar
  25. 25.
    van Krevelen DW, te Nijenhuis K (2010) Properties of polymers. Science Press, Beijing, pp 189–225Google Scholar
  26. 26.
    Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14(2):147–154CrossRefGoogle Scholar
  27. 27.
    Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New YorkGoogle Scholar
  28. 28.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, OxfordGoogle Scholar
  29. 29.
    Colby RH, Rubinstein M (1990) Two-parameter scaling for polymers in Θ solvents. Macromolecules 23(10):2753–2757CrossRefGoogle Scholar
  30. 30.
    Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1: fluid mechanics2nd edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49(5):425–442CrossRefGoogle Scholar
  32. 32.
    Lu F, Song J, Cheng B, Ji X, Wang L (2013) Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose 20:1343–1352CrossRefGoogle Scholar
  33. 33.
    Zhu X, Chen X, Saba H, Zhang Y, Wang H (2012) Linear viscoelasticity of poly(acrylonitrile-co-itaconic acid)/1-butyl-3-methylimidazolium chloride extended from dilute to concentrated solutions. Eur Polym J 48:597–603CrossRefGoogle Scholar
  34. 34.
    Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV dependence on concentration. J Am Chem Soc 64:2716–2718CrossRefGoogle Scholar
  35. 35.
    Kraemer EO (1938) Molecular weights of celluloses and cellulose derivates. Ind Eng Chem Res 30(10):1200–1203CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Hongxiang Chen
    • 1
    • 2
  • Ensong Zhang
    • 3
  • Xuemin Dai
    • 3
    • 4
  • Wenke Yang
    • 1
  • Xue Liu
    • 1
  • Xuepeng Qiu
    • 3
  • Wei Liu
    • 1
    Email author
  • Xiangling Ji
    • 1
    Email author
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.University of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.Laboratory of Polymer Composites and Engineering, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  4. 4.University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations