Advertisement

Journal of Polymer Research

, 26:24 | Cite as

Preparation and antibacterial properties of nano biocomposite Poly(ε-caprolactone)-SiO2 films with nanosilver

  • Uğursoy Olgun
  • Kenan Tunç
  • Ayşegül Hoş
ORIGINAL PAPER
  • 21 Downloads

Abstract

Two different silica samples with different particle size distributions (Silica-I: 40–63 μm, Silica-II: 90% below <55 μm) were utilized after the nano silver (5–30 nm) coating process by poly(dimethylsiloxane) in acetone. The prepared nano Ag-silica powders were melt-mixed into poly(ε-caprolactone) (PCL) and the mixture was roll-milled to produce the nano biocomposite films containing 10%, 20% and 40% nano Ag-silica. The antibacterial activity of the composite films against E. coli was evaluated. For the PCL films with 40% Ag-silica (0.08–0.12% nanosilver), 100% reduction of the bacterial contamination was observed. The nanosilver coated silica particles could find applications in antibacterial nano biocomposites.

Keywords

Nanosilver Coating Silica Antibacterial Poly(ε-caprolactone) Roll-mill 

Notes

Acknowledgements

This work was partially supported by Sakarya University under Project No. BAPK 2009.50.01.005.

References

  1. 1.
    Loh XJ (2017) Latest advances in antibacterial materials. J Mol Eng Mater 5:1CrossRefGoogle Scholar
  2. 2.
    Sahahverdi AR, Fakhimi A, Sahahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171CrossRefGoogle Scholar
  3. 3.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  4. 4.
    Swartjes JJTM, Sharm PK, Kooten TG, Mei HC, Mahmoudi M, Busscher HJ, Rochford ETJ (2015) Current developments in antimicrobial surface coatings for biomedical applications. Curr Med Chem 22(18):2116–2129CrossRefGoogle Scholar
  5. 5.
    Tunç K, Olgun U (2006) Microbiology of public telephones. J Infect 53(2):140–143CrossRefGoogle Scholar
  6. 6.
    Ferraris M, Balagna C, Perero S, Miola M, Ferraris S, Baino F, Battiato A, Manfredotti C, Vittone E, Vernè E (2012) Silver nanocluster/silica composite coatings obtained by sputtering for antibacterial applications. Proceedings of International Conference on Structural Nano Composites (Nanostruc 2012), IOP Publishing, IOP Conf. Series: Materials Science and Engineering 40.  https://doi.org/10.1088/1757-899X/40/1/012037
  7. 7.
    Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 6(5):553–567CrossRefGoogle Scholar
  8. 8.
    Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W (2014) Antimicrobial polymers. Adv Healthc Mater 3:1969–1985CrossRefGoogle Scholar
  9. 9.
    Melinte V, Buruiana T, Moraru ID, Buruiana EC (2011) Silver-polymer composite materials with antibacterial properties. Dig J Nanomater Biostruct 6(1):213–223Google Scholar
  10. 10.
    Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976CrossRefGoogle Scholar
  11. 11.
    Ouay BL, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354CrossRefGoogle Scholar
  12. 12.
    Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249CrossRefGoogle Scholar
  13. 13.
    Hartemann P, Hoet P, Proykova A, Fernandes T, Baun A, Jong WD, Filser J, Hensten A, Kneuer C, Maillard J-Y, Norppa H, Scheringer M, Wijnhoven S (2015) Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Mater Today 18(3):122–123CrossRefGoogle Scholar
  14. 14.
    Niakan S, Niakan M, Hesaraki S, Nejadmoghaddam MR, Moradi M, Hanafiabdar M, Allamezadeh R, Sabouri M (2013) Comparison of the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur J Microbiol 6(5):1–5CrossRefGoogle Scholar
  15. 15.
    Kenawy E-R, Salem IA, Abo-Elghit EM, Al-Owais AA (2014) New trends in antimicrobial polymers:a state-of-the-art review. Int J Chem Appl Biol Sci 1(2):95–105CrossRefGoogle Scholar
  16. 16.
    Huang K-S, Yang C-H, Huang S-L, Chen C-Y, Lu Y-Y, Lin Y-S (2016) Recent advances in antimicrobial polymers:a mini-review. Int J Mol Sci 17(1578):1–14Google Scholar
  17. 17.
    Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8(5):1359–1384CrossRefGoogle Scholar
  18. 18.
    Kaali P (2011) Antimicrobial polymer composites for medical applications. PhD thesis, KTH Chemical Science and Engineering, Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  19. 19.
    Felice B, Seitz V, Bach M, Rapp C, Wintermantel E (2017) Antimicrobial polymers: antibacterial efficacy of silicone rubber–titanium dioxide composites. J Compos Mater 51(16):2253–2262CrossRefGoogle Scholar
  20. 20.
    Bonilla CEP, Trujillo S, Demirdögen B, Perilla JE, Elcin YM, Ribelles JLG (2014) New porous polycaprolactone–silica composites for bone regeneration. Mater Sci Eng C 40:418–426CrossRefGoogle Scholar
  21. 21.
    Muñoz-Bonilla A, Cerrada ML, Fernández-García M, Kubacka A, Ferrer M, Fernández-García M (2013) Biodegradable polycaprolactone-titania nanocomposites: preparation, characterization and antimicrobial properties. Int J Mol Sci 14:9249–9266CrossRefGoogle Scholar
  22. 22.
    Chouzouri G, Xanthos M (2007) In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater 3:745–756CrossRefGoogle Scholar
  23. 23.
    Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(347):1–17Google Scholar
  24. 24.
    Araujo JV, Martins A, Leonor IB, Pinho ED, Reis RL, Neves NM (2008) Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. J Biomater Sci Polym Ed 19(10):1261–1278CrossRefGoogle Scholar
  25. 25.
    Duan YY, Jia J, Wang SH, Yan W, Jin L, Wang ZY (2007) Preparation of antimicrobial poly (ε-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106:1208–1214Google Scholar
  26. 26.
    Li X, Shi J, Dong X, Zhang L, Zeng H (2008) A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J Biomed Mater Res 84A:84–91CrossRefGoogle Scholar
  27. 27.
    Flieger M, Kantorová M, Prell A, Řezanka T, Votruba J (2003) Biodegradable plastics from renewable sources. Folia Microbiol 48(1):27–44CrossRefGoogle Scholar
  28. 28.
    Olgun U, Tunç K, Özaslan V (2011) Preparation of antimicrobial polycaprolactone silica composite films with nanosilver rods and triclosan using roll-milling method. Polym Adv Technol 22:232–236CrossRefGoogle Scholar
  29. 29.
    Mosselhy DA, Granbohm H, Hynönen U, Ge Y, Palva A, Nordström K, Hannula S-P (2017) Nanosilver–silica composite: prolonged antibacterial effects and bacterial interaction mechanisms for wound dressings. Nanomaterials 7:261CrossRefGoogle Scholar
  30. 30.
    Besinis A, Peralta TD, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1):1–16CrossRefGoogle Scholar
  31. 31.
    Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu Y, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654Google Scholar
  32. 32.
    Lim MM, Sultana N (2016) In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds. 3. Biotech 6(211):1–10Google Scholar
  33. 33.
    Tran PA, Hocking DM, O’Connor AJ (2015) In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Mater Sci Eng C 47:63–69CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of ChemistrySakarya UniversitySerdivanTurkey
  2. 2.Department of BiologySakarya UniversitySerdivanTurkey

Personalised recommendations