Iron(III) porphyrin catalyzed polymerization of acrylamide in ionic liquids

  • Anchal SinghalEmail author
  • S. M. S. Chauhan


Iron(III) porphyrin is advocated as catalyst for polymerization of acrylamide with hydrogen peroxide in ionic liquid medium. Reaction conditions were optimized using different porphyrins, solvents, oxidants and initiators. The polymer products were characterized by using 1H NMR, FT-IR, GPC and Mass spectrometric techniques. The recyclability of catalyst and ionic liquids, high yields, high molecular weights and simple work-up procedure are the important attributes of this protocol and contribute as an attractive addition to polymer chemistry.


Polyacrylamide Porphyrin Ionic liquids Catalysis Hydrogen peroxide 



We are grateful for financial assistance to the Council of Scientific and Industrial Research (CSIR), New Delhi, India. We also thank Indian Institute of Technology, Delhi for facilitating GPC analysis and Central Instrumentation Facility (CIF), University of Delhi for characterization of polymer products.


  1. 1.
    Jackson P (1996) The analysis of fluorophore-labeled carbohydrates by polyacrylamide gel electrophoresis. Mol Biotechnol 5:101–123CrossRefGoogle Scholar
  2. 2.
    Kurenkov VF, Hartan H–G, Lobanov FI (2002) Application of polyacrylamide flocculants for water treatment. Chemistry and Computer Simulation Butlerov’s Communications 3:31–40Google Scholar
  3. 3.
    Barani K, Kalantari M (2017) Recovery of kaolinite from tailings of zonouz kaolinwashing plant by flotation-flocculation method. J Mater Res Technol 7:142–148CrossRefGoogle Scholar
  4. 4.
    Zou W, Zhao J, Sun C (2018) Adsorption of anionic polyacrylamide onto coal and kaolinite calculated from the extended DLVO theory using the van OssChaudhury-good theory. Polymers 10:113–123CrossRefGoogle Scholar
  5. 5.
    Dos Santos LA, Carrodeguas RG, Boschi AO, De Arruda AC (2003) Dualsetting calcium phosphate cement modified with ammonium polyacrylate. Artif Organs 27:412–418CrossRefGoogle Scholar
  6. 6.
    Borling D, Chan K, Hughes E and Sydansk R (1994) Pushing out the oil with conformance control, Oil Field Rev (April), 44–58Google Scholar
  7. 7.
    Bologna LS, Andrawes FF, Barwenik FW, Lentz RD, Sozka RE (1999) Analysis of residual acrylamide in field crops. J Chromatogr Sci 37:240–244CrossRefGoogle Scholar
  8. 8.
    Pogorelova SP, Bourenko T, Kharitonov AB, Willner I (2002) Selective sensing of triazine herbicides in imprinted membranes using ionsensitive field effect transistors and microgravimetric quartz crystal microbalance measurements. Analyst 127:1484–1491CrossRefGoogle Scholar
  9. 9.
    Jain R, Mahto V (2015) Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system. J Pet Sci Eng 133:612–621CrossRefGoogle Scholar
  10. 10.
    Farrokhpay S, Morris GE, Fornasiero D, Self P (2006) Titania pigment particles dispersion in water-based paint films. JCT Res 3:275–283Google Scholar
  11. 11.
    Mukhopadhyay A, Midha VK (2008) A review on designing the waterproff breathable fabrics part II: construction and suitability of breathable fabrics for different uses. J Ind Text 38:17–41CrossRefGoogle Scholar
  12. 12.
    Chen Z, Chen W, Li C, Pu Y, Sun H (2016) Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects. Sci Total Environ 554-555:26–33CrossRefGoogle Scholar
  13. 13.
    Yang T–H (2008) Recent applications of polyacrylamide as biomaterials. Recent Patents on Materials Science 1:29–40CrossRefGoogle Scholar
  14. 14.
    Helvacioglu E, Aydin V, Nugay T, Nugay N, Uluocak BG, Sen S (2011) High strength poly(acrylamide)-clay hydrogels. J Polym Res 18:2341–2350CrossRefGoogle Scholar
  15. 15.
    -Lamgroudi AE, Rabiee A (2012) A novel acrylamide-anatase hybrid nanocomposite. J Polym Res 19:9970–9982CrossRefGoogle Scholar
  16. 16.
    Sanchez-Leija RJ, Torres-Lubian JR, Resendiz-Rubio A, Luna-Barcenas G, Mota-Morales JD (2016) Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Adv 6:13072–13079CrossRefGoogle Scholar
  17. 17.
    Gur’eva LL, Tkachuk AI, Estrin YI, Komarov BA, Dzhavadyan EA, Estrina GA, Bogdanova LM, Surkov NF, Rosenberg BA (2008) Synthesis and free-radical polymerization of water-soluble acrylamide monomers. Polym Sci Ser A 50:283–290CrossRefGoogle Scholar
  18. 18.
    Singh S, Singh A, Yadav BC, Tandon P, Kumar S, Yadav RR, Pomogailo SI, Dzhardimalieva GI, Pomogailo AD (2015) Frontal polymerization of acrylamide complex with nanostructured ZnS and PbS: their characterizations and sensing applications. Sensors Actuators B Chem 207:460–469CrossRefGoogle Scholar
  19. 19.
    Wang G–X, Lu M, Hou Z–H, Liu L–C, Liang E–X, Wu H (2015) Living radical polymerization of polyacrylamide with submicrometer size by dispersion polymerization. E-Polymers 15:0200Google Scholar
  20. 20.
    Chiu D-J, Li Y, Feng C-K, Yang M-R, Chen K-S, Swieszkowski W (2017) Preparation and enhanced mechanical properties of hydroxyapatite hybrid hydrogels via novel photocatalytic polymerization. J Polym Res 24:227–235CrossRefGoogle Scholar
  21. 21.
    Grassl B, Clisson G, Khoukh A, Billon L (2008) Nitroxide-mediated radical polymerization of acrylamide in water solution. Eur Polym J 44:50–58CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Ye L, Diao Y, Lei W, Shi L, Ran R (2016) RAFT polymerization of acrylamide manipulated with trithiocarbonates in poly(ethylene glycol) solution. J Appl Polym Sci 133:1–12Google Scholar
  23. 23.
    Karpenko MA, Kolzunova LG (2011) Initiation of electropolymerization of acrylamide and formaldehyde by metallic zinc in aqueous medium. Russ J Electrochem 47:1091–1095CrossRefGoogle Scholar
  24. 24.
    Ding S, Rodosz M, Shen Y (2005) Ionic liquid catalysts for biphasic atom transfer radical polymerization of methyl methacrylate. Macromolecules 38:5921–5928CrossRefGoogle Scholar
  25. 25.
    Biedron T, Kubisa P (2005) Radical polymerization in a chiral ionic liquid: atom transfer radical polymerization of acrylates. J Polym Sci A polym Chem 43:3454–3459CrossRefGoogle Scholar
  26. 26.
    Shaughnessy KH, Klingshirn MA, P’Pool SJ, Holbrey JD, Rogers RD (2003) Polar non-coordinating ionic liquids as solvents for coordination polymerization of olefins in ionic liquids as green solvents. ACS Symp Ser 856:300–313CrossRefGoogle Scholar
  27. 27.
    Kalra B, Gross RA (2000) Horseradish mediated free radical polymerization of methyl methacrylate. Biomacromolecules 1:501–505CrossRefGoogle Scholar
  28. 28.
    Chauhan SMS, Kalra B, Mohapatra PP (1999) Oxidation of 1-naphthol and related phenols with hydrogen peroxide and potassium superoxide catalyzed by 5,10,15,20-tetraarylporphyrinatoiron(III) chlorides in different reaction conditions. J Mol Catal A Chem 137:85–92CrossRefGoogle Scholar
  29. 29.
    Kumari P, Nagpal R, Chauhan P, Yatindranath V, Chauhan SMS (2015) Efficient iron(III) porphyrins-catalyzed oxidation of guanidoximes to cyanamides in ionic liquids. J Chem Sci 127:13–18CrossRefGoogle Scholar
  30. 30.
    Singhal A, Chauhan SMS (2012) Biomimetic oxidation of guggulsterone with hydrogen peroxide catalyzed by iron(III)porphyrins in ionic liquid. Catal Commun 25:28–31CrossRefGoogle Scholar
  31. 31.
    Li J, Li M, Li S, Shi L, Ren C, Cui D, Wang Y, Tang T (2008) Styrene polymerization catalyzed by metal porphyrin complex/ MAO for in situ synthesizing polystyrene containing air stable π-cation radicals. J Polym Sci A Polym Chem 46:1240–1248CrossRefGoogle Scholar
  32. 32.
    Brounecker WA, Itami Y, Matyjaszewski K (2005) Osmium mediated radical polymerizations. Macromolecules 38:9402–9404CrossRefGoogle Scholar
  33. 33.
    Angrish C, Chauhan SMS (2004) Biomimetic polymerization of acrylamide with hydrogen peroxide catalysed by water-soluble anionic iron(III)5,10,15,20- tetrakis-(2′,6′-dichloro-3′-sulphonatophenyl)porphyrin. ARKINOV viii:61–68Google Scholar
  34. 34.
    Singhal A, Ahmad S, Chauhan SMS (2018) Iron(III)porphyrin catalyzed ionic liquid mediated polymerization of methylmethacrylate. Appl Organomet Chem 32:1–6CrossRefGoogle Scholar
  35. 35.
    Singhal A, Chauhan SMS (2018) Free radical copolymerization of acrylamide and N-vinylpyrrolidone catalyzed by iron(III)porphyrins in the presence of ionic liquids. Org Prep Proced Int 50(3):359–371CrossRefGoogle Scholar
  36. 36.
    Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12CrossRefGoogle Scholar
  37. 37.
    Shaughnessy KH, Klingshirn MA, P’Pool SJ, Holbrey JD, Rogers RD (2003). ACS Symp Ser 856:300–313CrossRefGoogle Scholar
  38. 38.
    Vijayaraghvan R, Macfarlane DR (2004) Living cationic polymerization of styrene in an ionic liquid. Chem Commun:700–701Google Scholar
  39. 39.
    Vijayaraghvan R, Macfarlane DR (2005) Group transfer polymerization in hydrophobic ionic liquids. Chem Commun:1149–1151Google Scholar
  40. 40.
    Uyama H, Takamoto T, Kobayahi S (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym J Japan 34:94–96CrossRefGoogle Scholar
  41. 41.
    Pringle JM, Forsyth M, Macfarlane DR, Wagner K, Hall SB, Officer DL (2005) The influence of the monomer and the ionic liquid on the electrochemical preparation of the polythiophene. Polymer 46:2047–2058CrossRefGoogle Scholar
  42. 42.
    Vygodskii Y, Lozinskaya EI, Shaplov AS, Lyssenko KA, Antipin MY, Urman YG (2004) Implementation of ionic liquids as activating media for polycondensation processes. Polymer 45:5031–5045CrossRefGoogle Scholar
  43. 43.
    Tang H, Qu Y, Li Y, Dong S (2018) Synthesis of hydroxypropylated debranched pea starch with high substitution degree in an ionic liquid, and its characterization and properties. J Polym Res 25:235–246CrossRefGoogle Scholar
  44. 44.
    Zhang X, Liu W, Chen Y, Gong A, Chen C, Xi F (1999) Self-condensing vinyl polymerization of acrylamide. Polym Bull 43:29–34CrossRefGoogle Scholar
  45. 45.
    Singh V, Tiwari A, Kumari P, Sharma AK (2007) Microwave accelerated synthesis and characterization of poly(acrylamides), J. Appl Polym Sci 104:3702–3707CrossRefGoogle Scholar
  46. 46.
    kalra B, Gross RA (2002) HRP-mediated polymerization of acrylamide and sodium acrylate. Green Chem 4:174–178CrossRefGoogle Scholar
  47. 47.
    Behari K, Raja GD, Agarwal A (1989) Kinetics of perphosphotase-initiated polymerization of acrylamide with different activators. Polymer 30:726–731CrossRefGoogle Scholar
  48. 48.
    Gupta KC, Verma M, Behari K (1986) Studies on the aqueous polymerization of acrylamide initiated by the potassium permanganate/glyceric acid redox system. Macromolecules 19:548–551CrossRefGoogle Scholar
  49. 49.
    Guan S-Y, Mlyna RJ, Sarkanen S (1997) Dehydrogenative polymerization of conifery alcohol on macromolecular lignin templates. Phytochemistry 45:911–918CrossRefGoogle Scholar
  50. 50.
    Guerra A, Ferraz A, Cotrim AR, Da Silva FT (2000) Polymerization of lignin fragments contained in a model effluent by polyphenoloxidases and horseradish peroxidase/ hydrogen peroxide system. Enzym Microb Technol 26:315–323CrossRefGoogle Scholar
  51. 51.
    Machii K, Wantabe Y, Morishima I (1995) Acyl peroxo-iron(III) porphyrin complexes: a new entry of potent oxidants for the alkene epoxidation. J Am Chem Soc 117:6691–6697CrossRefGoogle Scholar
  52. 52.
    Lippai I, Magliozzo RS, Peisach J (1999) EPR spectroscopic reinvestigation of the activation of iron(III) complexes of PMAH as a bleomycin model. J Am Chem Soc 121:780–784CrossRefGoogle Scholar
  53. 53.
    Lalot T, Brigodiot M, Marechal E (1999) A kinetic approach to acrylamide radical polymerization by horse radish peroxidase-mediated initiation. Polym Int 48:288–292CrossRefGoogle Scholar
  54. 54.
    Fujii H (1993) Effects of the electron-withdrawing power of substituents on the electronic structure and reactivity in oxoiron(IV) porphyrin π-cation radical complexes. J Am Chem Soc 115:4641–4648CrossRefGoogle Scholar
  55. 55.
    Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations