Journal of Polymer Research

, 25:239 | Cite as

Heterogeneous distribution of chain mobility in nascent UHMWPE in the less entangled state

  • Wei LiEmail author
  • Zhen Yue
  • Artur Lozovoi
  • Oleg Petrov
  • Carlos Mattea
  • Siegfried StapfEmail author


The structure of chain entanglements in the solid state is important for revealing the relationship of structure and properties of polyolefin. In this work, low-field solid-state 1H NMR is used to study the chain dynamics of ultra-high molecular weight polyethylene (UHMWPE) in the solid state. It has been found that the relaxation distribution, analyzed by a multi-exponential inversion program, is an effective method to characterize the heterogeneous chain mobility. It is evidenced from the results that the UHMWPE in a less entangled state presents an obviously heterogeneous distribution of chain mobility in the non-crystalline phase, corresponding to its heterogeneous distribution of entangled points. In comparison, the commercial UHMWPE with a large number of entanglements shows a much more uniform mobility of the non-crystalline components. This heterogeneous distribution of chain mobility becomes even more critical after annealing the samples below the melting point, especially for the less entangled UHMWPE.


Entanglements UHMWPE Low field NMR Relaxation distribution UPEN 



The Natural Science Foundation of China (No. 21776141), the Talent Project of Zhejiang Association for Science and Technology under Grant 2018YCGC014, the Opening Foundation from Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology (ACEMT-17-01) and sponsorship by the K. C. Wong Magna Fund in Ningbo University are gratefully acknowledged.


  1. 1.
    Rastogi S, Lippits DR, Peters GWM, Graf R, Yao Y, Spiess HW (2005) Heterogeneity in polymer melts from melting of polymer crystals. Nat Mater 4:635–641CrossRefGoogle Scholar
  2. 2.
    Osichow A, Rabe C, Vogtt K, Narayanan T, Harnau L, Drechsler M, Ballauff M, Mecking S (2013) Ideal polyethylene nanocrystals. J Am Chem Soc 135:11645–11650CrossRefGoogle Scholar
  3. 3.
    Litvinov VM, Ries ME, Baughman TW, Henke A, Matloka PP (2013) Chain entanglements in polyethylene melts. Why is it studied again? Macromolecules 46:541–547CrossRefGoogle Scholar
  4. 4.
    Chen T, Yang HQ, Li W (2015) Phase structure and mechanical properties of disentangled ultra-high molecular weight polyethylene/polyhedral oligomeric silsesquioxane nanocomposites in a solid state. J Polym Res 22:223–231CrossRefGoogle Scholar
  5. 5.
    Ronca S, Fortem G, Tjaden H, Yao Y, Rastogi S (2012) Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites. Polymer 53:2897–2907CrossRefGoogle Scholar
  6. 6.
    Romano D, Tops N, Andablo-Reyes E, Ronca S, Rastogi S (2014) Influence of polymerization conditions on melting kinetics of low entangled UHMWPE and its implications on mechanical properties. Macromolecules 47:4750–4760CrossRefGoogle Scholar
  7. 7.
    Santol M, Gorelli FA, Bini R, Haines J, Lee A (2013) High-pressure synthesis of a polyethylene/zeolite nano-composite material. Nat Commun 4:1557–1563CrossRefGoogle Scholar
  8. 8.
    Li W, Yang HQ, Zhang JJ, Mu JS, Gong DR, Wang XD (2016) Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene. Chem Commun 52:11092–11095CrossRefGoogle Scholar
  9. 9.
    Li W, Hui L, Xue B, Dong CD, Chen YM, Hou LX, Jiang BB, Wang JD, Yang YR (2018) Facile high-temperature synthesis of weakly entangled polyethylene using a highly activated Ziegler-Natta catalyst. J Catal 360:145–151CrossRefGoogle Scholar
  10. 10.
    Graessley WW (1974) The entanglement concept in polymer rheology. Adv Polym Sci 16:1–179CrossRefGoogle Scholar
  11. 11.
    Aguilar M, Vega JF, Sanz E, Martínez-Salazar J (2001) New aspects on the rheological behaviour of metallocene catalysed polyethylenes. Polymer 42:9713–9721CrossRefGoogle Scholar
  12. 12.
    Richter D, Farago B, Butera R, Fetters LJ, Huang JS, Ewen B (1993) On the origins of entanglement constraints. Macromolecules 26:795–804CrossRefGoogle Scholar
  13. 13.
    Sun HB, Kawata S (2004) Advances in Polymer Science: NMR–3D Analysis –Photopolymerization, Springer-Verlag, Berlin, p 169Google Scholar
  14. 14.
    Saalwächter K (2007) Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog Nucl Magn Reson Spectrosc 51:1–35CrossRefGoogle Scholar
  15. 15.
    Foteinopoulou K, Karayiannis NC, Mavrantzas VG, Kröger M (2006) Primitive path identification and entanglement statistics in polymer melts: results from direct topological analysis on atomistic polyethylene models. Macromolecules 39:4207–4216CrossRefGoogle Scholar
  16. 16.
    Ramos J, Vega JF, Theodorou DN, Martinez-Salazar J (2008) Entanglement relaxation time in polyethylene: simulation versus experimental data. Macromolecules 41:2959–2962CrossRefGoogle Scholar
  17. 17.
    Kresse B, Hofmann M, Privalov AF, Fatkullin N, Fujara F, Rössler EA (2015) All polymer diffusion regimes covered by combining field-cycling and field-gradient 1H NMR. Macromolecules 48:4491–4502CrossRefGoogle Scholar
  18. 18.
    Hedesiu C, Demco DE, Kleppinger R, Buda AA, Blümich B, Remerie K, Litvinov VM (2007) The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer 48:763–777CrossRefGoogle Scholar
  19. 19.
    Shi XM, Wang JD, Stapf S, Mattea C, Li W, Yang YR (2011) Effects of thermos-oxidative aging on chain mobility, phase composition, and mechanical behavior of high-density polyethylene. Polym Eng Sci 51:2171–2177CrossRefGoogle Scholar
  20. 20.
    Hedesiu C, Demco DE, Kleppinger R, Poel GV, Gijsbers W, Blümich B, Remerie K, Litvinov VM (2007) Effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid -state NMR, SAXS, and DSC. Macromolecules 40:3977–3989CrossRefGoogle Scholar
  21. 21.
    Bärenwald R, Goerlitz S, Godehardt R, Osichow A, Tong Q, Krumova M, Mecking S, Saalwächter K (2014) Local flips and chain motion in polyethylene crystallites: a comparison of melt-crystallized samples, reactor powders, and nanocrystals. Macromolecules 47:5163–5173CrossRefGoogle Scholar
  22. 22.
    Borgia GC, Brown RJS, Fantazzini P (2001) Examples of marginal resolution of NMR relaxation peaks using UPEN and diagnostics. Magn Reson Imaging 19:473–475CrossRefGoogle Scholar
  23. 23.
    Williamson NH, Röding M, Galvosas P, Miklavcic SJ, Nydén M (2016) Obtaining T-1-T-2 distribution functions from 1-dimensional T-1 and T-2 measurements: the pseudo 2-D relaxation model. J Magn Reson 269:186–195CrossRefGoogle Scholar
  24. 24.
    Ren CY, Du XH, Ma L, Wang YH, Zheng J, Tang T (2010) Preparation of multifunctional supported metallocene catalyst using organic multifunctional modifier for synthesizing polyethylene/clay nanocomposites via in situ polymerization. Polymer 51:3416–3424CrossRefGoogle Scholar
  25. 25.
    Peetters M, Goderis B, Vonk C, Reynaers H, Mathot V (1997) Morphology of homogeneous copolymers of ethene and 1-octene. I Influence of thermal history on morphology. J Polym Sci B Polym Phys 35:2689–2713CrossRefGoogle Scholar
  26. 26.
    Liu KS, Ronca S, Andablo-Reyes E, Forte G, Rastogi S (2015) Unique rheological response of ultrahigh molecular weight polyethylenes in the presence of reduced graphene oxide. Macromolecules 48:131–139CrossRefGoogle Scholar
  27. 27.
    Levitt MH (2008) Spin dynamics: basics of nuclear magnetic resonance2nd edn. Wiley, ChichesterGoogle Scholar
  28. 28.
    Maus A, Hertlein C, Saalwächter K (2006) A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers. Macromol Chem Phys 207:1150–1158CrossRefGoogle Scholar
  29. 29.
    Rodrigues TC, Tavares MIB, Preto M, Soares IL, Moreira ACF (2008) Evaluation of polyethylene/Organoclay nanocomposites by low-field nuclear relaxation. Int J Polym Mater 57:1119–1123CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, School of Material Science and Chemical EngineeringNingbo UniversityZhejiangPeople’s Republic of China
  2. 2.Department of Technical Physics IITU IlmenauIlmenauGermany

Personalised recommendations