Advertisement

Journal of Polymer Research

, 25:240 | Cite as

Polyester-based green renewable eco-composites by solar energy tube processing: characterization and assessment of properties

  • Chin-San Wu
  • Hsin-Tzu Liao
  • Chi-Hui Tsou
ORIGINAL PAPER
  • 33 Downloads

Abstract

A solar energy tube was used for the processing of banana fiber (BF), which is employed as filler in polycaprolactone-based green composites. The composite was made by melt-blending acrylic acid-grafted polycaprolactone (PCL-g-AA) with a coupling agent-treated banana fiber (TBF). To improve the interface adhesion of the PCL/BF composites, acrylic acid was used as a stabilizer for the blending of PCL and TBF. The water resistance of PCL-g-AA/TBF was greater than that of PCL/BF and a cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. The results from the FB proliferation assays indicated a higher cytocompatibility of the PCL/BF composites than of the PCL-g-AA/TBF composites. The cell-cycle test of FBs on PCL/BF and PCL-g-AA/TBF composites were not affected by the DNA content related to damage. Moreover, both BF and TBF enhanced the polysaccharide content and antioxidant properties of the composites, demonstrating the potential of PCL/BF and PCL-g-AA/TBF composites for biomedical material applications.

Keywords

Processing technologies Polycaprolactone Banana fiber Cytocompatibility Antioxidant properties 

Notes

Acknowledgements

The author thanks the National Science Council (Taipei City, Taiwan, R.O.C.) for financial support (MOST 106-2221-E-244 -008 -MY).

References

  1. 1.
    Marcano IE, Díaz-Alcántara CA, Urbano B, González-Andrés F (2016). Soil Biol Biochem 99:1–20CrossRefGoogle Scholar
  2. 2.
    Sartoria RB, Higinoa ML, Bastosb LHP, Mendes MF (2017). J Supercrit Fluids 128:149–158CrossRefGoogle Scholar
  3. 3.
    Bello RH, Linzmeyer P, Franco CMB, Souza O, Sellin N, Medeiros SHW, Marangoni C (2014). Waste Manag 34(8):1501–1509CrossRefGoogle Scholar
  4. 4.
    Christelová P, Langhe ED, Hřibová E, Čížková J, Sardos J, Hušáková M, Van den houwe I, Sutanto A, Kepler AK, Swennen R, Roux N, Doležel J (2017). Biodivers Conserv 26:801–824CrossRefGoogle Scholar
  5. 5.
    Shah MP, Reddy GV, Banerjee R, Babu PR, Kothari IL (2005). Process Biochem 40(1):445–451CrossRefGoogle Scholar
  6. 6.
    Fernandes ERK, Marangoni C, Souza O, Sellin N (2013). Energy Convers Manag 75:603–608CrossRefGoogle Scholar
  7. 7.
    Ramesh M, Atreya TSA, Aswin US, Eashwar H, Deepa C (2014). Procedia Engineering 97:563–572CrossRefGoogle Scholar
  8. 8.
    Bhoopathi R, Ramesh M, Deepa C (2014). Procedia Engineering 97:2032–2041CrossRefGoogle Scholar
  9. 9.
    Rathore A, Pradhan MK (2014). Materials Today Communications 4(2):3942–3951Google Scholar
  10. 10.
    Tibolla H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC (2018). Food Hydrocoll 75:192–201CrossRefGoogle Scholar
  11. 11.
    Baharin A, Fattah NA, Bakar AA, Ariff ZM (2016). Procedia Chemistry 19:999–1006CrossRefGoogle Scholar
  12. 12.
    Ramdhonee A, Jeetah PJ (2018). Environ Chem Eng 5(5):4298–4306CrossRefGoogle Scholar
  13. 13.
    Ahmad T, Danish M (2018). J Environ Manag 206:330–348CrossRefGoogle Scholar
  14. 14.
    Mahbubul IM, Khan MMA, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur R (2018). Renew Energy 121:36–44CrossRefGoogle Scholar
  15. 15.
    Sathyamurthy R, El-Agouz SA, Nagarajan PK, Subramani J, Arunkumar T, Mageshbabu D, Madhu B, Bharathwaaj R, Prakash N (2017). Renew Sust Energ Rev 77:1069–1097CrossRefGoogle Scholar
  16. 16.
    Razali SZ, Yunus R, Rashid SA, Lim HN, Jan BM (2018). Renew Sust Energ Rev 90:171–186CrossRefGoogle Scholar
  17. 17.
    Yates MR, Barlow CY (2013). Resour Conserv Recycl 78:54–66CrossRefGoogle Scholar
  18. 18.
    Park JY, Kyung KH, Tsukada K, Kim SH, Shiratori S (2017). Polymer 123:194–202CrossRefGoogle Scholar
  19. 19.
    Mahieu A, Terrié C, Agoulon A, Leblanc N, Youssef B (2013). J Polym Res 20:229CrossRefGoogle Scholar
  20. 20.
    Seggiani M, Altieri R, Puccini M, Stefanelli E, Esposito A, Castellani F, Stanzione V, Vitolo S (2018). Polym Degrad Stab 150:13–24CrossRefGoogle Scholar
  21. 21.
    Gil-Castell O, Badia JD, Ribes-Greus A (2018). Eur Polym J 101:273–281CrossRefGoogle Scholar
  22. 22.
    Adhikari R, Bristow KL, Casey PS, Freischmidt G, Hornbuckle JW, Adhikari B (2016). Agric Water Manag 169:1–13CrossRefGoogle Scholar
  23. 23.
    Alix S, Mahieu A, Terrie J, Gerault E, Feuilloley MGJ, Gattin R, Edon V, Ait-Younes T, Leblanc N (2013). Eur Polym J 49(6):1234–1242CrossRefGoogle Scholar
  24. 24.
    Sarasini F, Tirillò J, Puglia D, Dominici F, Santulli C, Boimau K, Valente T, Torre L (2017). Compos Struct 167:20–29CrossRefGoogle Scholar
  25. 25.
    Hejna A, Formela K, Saeb MR (2015). Ind Crop Prod 76:725–733CrossRefGoogle Scholar
  26. 26.
    Wu CS, Liao HT (2017). Polym Bull 74(6):2277–2295CrossRefGoogle Scholar
  27. 27.
    Rover MRR, Johnston PA, Lamsal BP, Brown RC (2013). J Anal Appl Pyrolysis 104:194–201CrossRefGoogle Scholar
  28. 28.
    Oliveira GKF, Tormin TF, Sousa RMF, Oliveira AD, Morais SALD, Richter EM, Munoz RAA (2016). Food Chem 192:691–697CrossRefGoogle Scholar
  29. 29.
    Shih YF, Lee WC, Jeng RJ, Huang CM (2006). J Appl Polym Sci 99:188–199CrossRefGoogle Scholar
  30. 30.
    Wu CS, Liao HT, Cai YX (2017). Polym Degrad Stab 140:55–63CrossRefGoogle Scholar
  31. 31.
    Wang Y, Yang JF (2010). J Polym Res 17:221–232CrossRefGoogle Scholar
  32. 32.
    Pal J, Skrifvars M, Nandan B, Srivastava RK (2017). J Mater Sci 52(4):2254–2262CrossRefGoogle Scholar
  33. 33.
    Wu CS (2017). Mater Sci Eng C 70:54–61CrossRefGoogle Scholar
  34. 34.
    Jiang M, Zhou B, Wang X (2018). Int J Hydrog Energy 43(12):6364–6378CrossRefGoogle Scholar
  35. 35.
    Wu CS (2016). Polym-Plast Technol Eng 55(4):391–402CrossRefGoogle Scholar
  36. 36.
    Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011). Eur J Pharm Sci 42(4):406–415CrossRefGoogle Scholar
  37. 37.
    Ferreira LM, Sobral CS, Blanes L, Ipolito MZ, Horibe EK (2010). J Plast Reconstr Aesthet Surg 63(5):865–869CrossRefGoogle Scholar
  38. 38.
    Xing Q, Zhao F, Chen S, McNamara J, DeCoster MA, Lvov YM (2010). Acta Biomater 6(6):2132–2139CrossRefGoogle Scholar
  39. 39.
    Furse S, Shearman GC (2018). BBA - Mol Cell Biol Lipids 1863(1):9–19CrossRefGoogle Scholar
  40. 40.
    Yang J, Li J (2018). Carbohydr Polym 181:264–274CrossRefGoogle Scholar
  41. 41.
    Wang Z, Xie J, Shen M, Nie S, Xie M (2018). Trends Food Sci Technol 74:147–157CrossRefGoogle Scholar
  42. 42.
    Li XL, Zhou AG (2007). Med Chem Res 15(9):471–482CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Applied CosmetologyKao Yuan UniversityKaohsiung CityRepublic of China
  2. 2.Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and EngineeringSichuan University of Science and EngineeringZigongChina

Personalised recommendations