Advertisement

Journal of Polymer Research

, 25:229 | Cite as

Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide

  • Xuetao Shi
  • Long Wang
  • Yuan Kang
  • Jianbin Qin
  • Jiantong Li
  • Hongming Zhang
  • Xun Fan
  • Yang Liu
  • Guangcheng Zhang
ORIGINAL PAPER

Abstract

Microcellular Polylactide (PLA) and PLA/poly(butylenes succinate) (PBS) foams were prepared by batch foaming process with supercritical carbon dioxide. The introduced PBS phase was immiscible with the PLA matrix and separated as domains. The study of CO2 solubility in PLA and PLA/PBS blends indicated the addition of PBS decreased the gas solubility due to the poor affinity of CO2 for PBS. The crystallization behavior of PLA was enhanced by small amount of PBS with lower cold crystallization temperature and higher crystallinity. However, separated PBS droplets led to less perfect and small crystallites, which showed greatly effect for the PLA foaming process. The investigation on the foaming conditions dependence indicated the PLA/PBS blends required higher temperature and longer time for the cell growth, which were nucleated around the interface between PLA and PBS. With less CO2 content in the PLA or PLA/PBS blends after different desorption time, the final cell morphology exhibited more uniform size distribution with bigger average cell size and smaller cell density. Different from the well closed-cell structure for neat PLA foam, the PLA/PBS foam presented open cell structure due to the cell nucleation around the PLA/PBS interface and the lower melt strength of PBS phase.

Keywords

Polylactide PBS Supercritical CO2 Batch foaming Cell morphology 

Notes

Acknowledgments

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (No. 51773170 and No. 51303149), and the Fundamental Research Funds for the Central Universities (No. 3102018jcc006).

References

  1. 1.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biotrsource Technol 101:8493–8501CrossRefGoogle Scholar
  2. 2.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  3. 3.
    Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRefGoogle Scholar
  4. 4.
    Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504CrossRefGoogle Scholar
  5. 5.
    Tasaka F, Ohya Y, Ouchi T (2001) One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone. Macromol Rapid Commun 22:820–824CrossRefGoogle Scholar
  6. 6.
    Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from Polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101CrossRefGoogle Scholar
  7. 7.
    Jing ZX, Shi XT, Zhang GC, Lei R (2015) Investigation of poly(lactide) stereocomplexation between linear poly(L-lactide) and PDLA-PEG-PDLA tri-block copolymer. Polym Int 64:1399–1407CrossRefGoogle Scholar
  8. 8.
    Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(L-lactide) with poly(propylene glycol). Biomacromolecules 7:2128–2135CrossRefGoogle Scholar
  9. 9.
    Shi XT, Zhang GC, Phuong TV, Lazzeri A (2015) Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 20:1579–1593CrossRefGoogle Scholar
  10. 10.
    Nofar M, Park CB (2014) Poly (lactic acid) foaming. Prog Polym Sci 39:1721–1741CrossRefGoogle Scholar
  11. 11.
    Xu LQ, Huang HX (2014) Foaming of poly(lactic acid) using supercritical carbon dioxide as foaming agent: influence of Crystallinity and Spherulite size on cell structure and expansion ratio. Ind Eng Chem Res 53:2277–2286CrossRefGoogle Scholar
  12. 12.
    Di Y, Iannace S, Maio ED, Nicolais L (2005) Reactively modified poly(lactic acid): properties and foam processing. Macromol Mater Eng 290:1083–1090CrossRefGoogle Scholar
  13. 13.
    Jia P, Hu J, Zhai WT, Duan Y, Zhang J, Han C (2015) Cell morphology and improved heat resistance of microcellular poly(l-lactide) foam via introducing Stereocomplex crystallites of PLA. Ind Eng Chem Res 54:2476–2488CrossRefGoogle Scholar
  14. 14.
    Mohammadi MS, Bureau MN and Nazhat SN (2014) In: P. Netti (ed) Biomedical Foams for Tissue Engineering Applications, Elsevier, UK. pp. 313–334Google Scholar
  15. 15.
    Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater. Sci. Eng., C 33:4767–4776CrossRefGoogle Scholar
  16. 16.
    Park CB, Baldwin DF, Suh NP (1995) Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym Eng Sci 35:432–440CrossRefGoogle Scholar
  17. 17.
    Corre YM, Maazouz A, Duchet J, Reignier J (2011) Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. J Supercrit Fluids 58:177–188CrossRefGoogle Scholar
  18. 18.
    Julien JM, Quantin JC, Benezet JC et al (2015) Chemical foaming extrusion of poly(lactic acid) with chain-extenders: physical and morphological characterizations. Eur Polym J 67:40–49CrossRefGoogle Scholar
  19. 19.
    Dorgan J, Janzen J, Clayton M et al (2005) Melt rheology of variable L-content. J Rheol 45:607–619CrossRefGoogle Scholar
  20. 20.
    Palade L, Lehermeier H, Dorgan J (2001) Melt rheology of high L-content poly(lactic acid). Macromolecules 34:1384–1390CrossRefGoogle Scholar
  21. 21.
    Ji GY, Zhai WT, Lin DP, Ren Q, Zheng W, Jung DW (2013) Microcellular foaming of PLA/silica nanocomposites in compressed CO2: critical influence of crystallite size on cell morphology and foam expansion. Ing Eng Chem Res 52:6390–6398CrossRefGoogle Scholar
  22. 22.
    Keshtkar M, Nofar M, Park CB, Carreau PJ (2014) Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer 55:4077–4090CrossRefGoogle Scholar
  23. 23.
    Mihai M, Huneault MA, Favis BD, Li H (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7:907–920CrossRefGoogle Scholar
  24. 24.
    Zhai WT, Ke Y, Zhu WL et al (2009) A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. Int J Mol Sci 10:5381–5397CrossRefGoogle Scholar
  25. 25.
    Zhao H, Cui Z, Wang X, Turng LS, Peng X (2013) Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Compos Part B 51:79–91CrossRefGoogle Scholar
  26. 26.
    Pilla S, Kim S, Aue GK et al (2010) Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephathalate) blends. Mater Sci Eng, C 30:255–262CrossRefGoogle Scholar
  27. 27.
    Shi XT, Zhang GC, Liu Y, Ma Z, Jing Z, Fan X (2016) Microcellular foaming of polylactide and poly(butylene adipate-co-terphathalate) blends and their CaCO3 reinforced nanocomposites using supercritical carbon dioxide. Polym Advan Technolo 27:550–560CrossRefGoogle Scholar
  28. 28.
    Shi XT, Qin JB, Wang L et al (2018) Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends. RSC Adv 22:11850–11861CrossRefGoogle Scholar
  29. 29.
    Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685CrossRefGoogle Scholar
  30. 30.
    Deng Y, Thomas NL (2015) Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur Polym J 71:534–546CrossRefGoogle Scholar
  31. 31.
    Yang XT, Guo YQ, Luo X, Zheng N, Ma T, Tan J, Li C, Zhang Q, Gu J (2018) Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos Sci Technol 164:59–64CrossRefGoogle Scholar
  32. 32.
    Tan L, Chen Y, Zhou W, Nie H, Li F, He X (2010) Novel poly(butylene succinate-co-lactic acid) copolyesters: synthesis, crystallization, and enzymatic degradation. Polym Degrad Stab 95:1920–1927CrossRefGoogle Scholar
  33. 33.
    Tsutsumi C, Hayase N, Nakagawa K, Tanaka S, Miyahara Y (2003) The enzymatic degradation of commercial biodegradable polymers by some lipases and chemical degradation of them. Macromol Symp 197:431–442CrossRefGoogle Scholar
  34. 34.
    Doroudiani S, Park CB, Kortschot MT (1996) Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polym Eng Sci 36:2645–2662CrossRefGoogle Scholar
  35. 35.
    Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym Sci 251:980–990Google Scholar
  36. 36.
    Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2005) Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta 435:142–150CrossRefGoogle Scholar
  37. 37.
    Wong A, Park CB (2012) The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide. Chem Eng Sci 75:49–62CrossRefGoogle Scholar
  38. 38.
    Wu DF, Yuan LJ, Laredo E et al (2012) Interfacial properties, viscositicity, and thermal behavior of poly(butylene succinate)/ polylactide blend. Ind. Eng. Chem. Res 51:2290–2298CrossRefGoogle Scholar
  39. 39.
    Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43CrossRefGoogle Scholar
  40. 40.
    Shieh YT, Lin YG (2002) Equilibrium solubility of CO2 in rubbery EVA over a wide pressure range: effects of carbonyl group content and crystallinity. Polymer 43:1849–1856CrossRefGoogle Scholar
  41. 41.
    Sato Y, Takikawa T, Sarokubo A et al (2000) Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Ind Eng Chem Res 2000(39):4813–4819CrossRefGoogle Scholar
  42. 42.
    Mahmood SH, Keshtkar M, Park CB (2014) Determination of carbon dioxide solubility in polylactide acid with accurate PVT properties. J Chem Thermodynamics 70:13–23CrossRefGoogle Scholar
  43. 43.
    Chen J, Liu T, Yuan WK, Zhao L (2013) Solubility and diffusivity of CO2 in polypropylene/micro-calcium carbonate composites. J Supercrit Fluids 77:33–43CrossRefGoogle Scholar
  44. 44.
    Chen RY, Zou W, Wu C, Jia SK, Huang Z, Zhang GZ, Yang ZT, Qu JP (2014) (Ctic acid)/poly(butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: analysis of mechanical properties, morphology, and crystallization behavior. Polym Test 34:1–9CrossRefGoogle Scholar
  45. 45.
    Zhang XC, Liu Q, Shi JF, Ye H, Zhou Q (2018) Distinctive tensile properties of the bends of ply(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS). J Polym Environ 26:1737–1744CrossRefGoogle Scholar
  46. 46.
    Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7:199–207CrossRefGoogle Scholar
  47. 47.
    Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640CrossRefGoogle Scholar
  48. 48.
    Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357CrossRefGoogle Scholar
  49. 49.
    Yasuniw M, Sakamo K, Ono Y et al (2008) Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer 49:1943–1951CrossRefGoogle Scholar
  50. 50.
    Li K, Peng J, Turng LS et al (2011) Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios. Adv. Polymtechnol 30:150–157Google Scholar
  51. 51.
    Ma ZL, Zhang GC, Shi XT et al (2015) Microcellular foaming of poly(phenylene sulfide)/poly(ether sulfones) blends using supercritical carbon dioxide. J Appl Polym Sci 132:42634CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations